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REPORT 1345

THE RESPONSE OF AN AIRPLANE TO RANDOM ATMOSPHERIC DISTURBANCES!

By FrangLiN W, DIiEpERICH

SUMMARY

The statistical approach to the gust-logd problem which con-
sists in considering flight through turbulent air to be a stationary
random process is extended by including the effect of lateral
variation of the instantaneous gust intensity on the aerodynamic
forces. The forces obtained in this manner are used in dynamic
analyses of mgzd and flexible airplanes free to move vertically,
in piteh, and in roll. The effect of the interaction of longi-
tudinal, normal, and lateral gusts on the wing stresses is also
considered.

The method of analyzing the rigid-body motions is similar
to that used for analyses of the dynamic stability of aivrplanes,
tn that the equations of motion are referred to stability axzes
and expressed in terms of convendional stability derivatives.
The method of analyzing the dynamic effects of structural
Slexibility consists in an extension of a numerical-integration
approach to the static aeroelastic problem and ts in a form
whicl offers the possibility of calculating divergence and flutter
speeds with relatively little additional effort.

The mean-square values, correlation functions, and power
spectra of some of the aerodynamic forces required in this type
of analysis are caleylated for one special correlation function
of the atmospheric turbulence. It is shown, for instance, that
if the span is relatively large compared with the integral scale
of turbulence, the mean-square lift and root bending moment
directly due to the gust are substantially reduced when the
differences in instantaneous intensity of the turbulence along
the span are taken into account. However, if the motions of
the airplane are taken into account the mean-square root bend-
ing moment may be inereased as a result of these differences.
Also, the mean-square pitching moment is shown to be sub-
stantially increased if the tail length is relatively large compared
with the scale of turbulence. Finally, the wing stresses due to
longitudinal, normal, and lateral gusis are shown to be statis-
tically independent under certain conditions.

INTRODUCTION

The local velocity fluctuations acting on an airplane flying
through atmospheric turbulence are functions of time defined
only in a statistical sense and, hence, constitute a stochastic
or random process. Consequently, the responses of the
airplane, whether they are motions (linear or angular dis-
placement, velocities, or accelerations), forces (lift, pitching
moment, bending moment, and so on), stresses, or any other

phenomena determined By the turbulence, can also be known
as functions of time in only a statistical sense.

This report is concerned with the statistical characteristics
of those responses which have a bearing on the loads and
stresses experienced by the airplane; although other prob-
lems such as those relating to passenger comfort or to the
stability of the airplane as a gun platform can be treated in
the same manner, they will not be considered here.

The first approaches to the gust-load problem which use the
statistical techniques developed for stationary random proc-
esses appear to be those of references 1, 2, and 3. (An earlier
investigation concerned with the motions of an airplane in
turbulent air is reported in ref. 4.) The fundamentals of
these approaches are discussed in some detail in reference 1,
and mention is made therein of investigations in other fields
of engineering and physics that have dealt with the problem
of deducing the statistical characteristics of the output or
response of a dynamic system from those of its input. The
mean-square normal acceleration of a rigid airplane free to
move in one degree of freedom, namely, vertical motion, is
calculated in reference 2. In addition to being rigid, the
airplane is implicitly assumed to be small enough for all its
components to experience the same gust velocity at any
ingtant of time. This means that the span of the airplane
must ‘be small compared with the integral scale of atmos-
pheric . turbulence, which on the basis of the available
knowledge concerning the properties of the atmosphere
(ref. 4, for instance) appears to be in the order of several
hundred to 1,000 or 2,000 feet; that is, the span of the airplane
must be less than about 100 feet.

The purpose of the present report is to extend this approach
to large flexible airplanes free to move in all directions. As
used herein, the terms ‘“small” and “large’” airplane refer
to airplanes which are very small and not very small, re-
spectively, compared with the integral scale of turbulence;
thus, an airplane flying in a wide variety of atmospheric
conditions may be ‘“small” under certain condjtions and
“large’” under others. Similarly, the terms “rigid” airplane
and “flexible’” airplane are used to designate a1rpla.nes flying,
respectively, at speeds far below those at which dynamic
and aeroelastic effects become important, and at speeds at
which these effects have to be taken into account; the same
airplane can thus be ‘rigid” under some conditions and

. f‘ﬂexible’ ’ under others.

1 Bupersedes NACA Technical Note 3910 by Franklin W, Diederich, 1057. This report represents, except for some minor changes, a thesls submitted in May 1854 in partial fulfillment
of the requiremonts for the dezres of Doctor of Philogophy at the California Institute of Technology, Pasadena, Calif,
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Several fundamental assumptions are inherent in the
analysis contained in this report. In the first place, all
atmospheric disturbances, motions, and structural deforma-
tions are assumed to be small enough to produce forces that
are linear and, hence, superposable. Also, the turbulent
“input” to the airplane is assumed to be stationary in &
statistical sense; that is, the turbulence in the plane of the
flight path is homogeneous. For the large airplane, the
additional assumption is made that the turbulence is axi-
symmetric with respect to vertical axes, a condition less
severe than complete isotropy. The statistical character-
istics of the turbulence are thus assumed to be invariant
under a translation of the space origin within the horizontal
plane and under a rotation of the coordinates about the
vertical axis. Finally, Taylor’s hypothesis to the effect
that time displacements are equivalent to longitudinal space
displacements is assumed to be valid.

The aerodynamic forces directly due to atmospheric
turbulence, which constitute the input forces for the dynamic
system represented by the airplane, are calculated in the
first part of this report for the large airplane, that is, for the
case where the spanwise distribution of the intensity of
turbulence has to be taken into account. (The effect of
spanwise variation of gust intensity on the lift has been
treated by a slightly different method in ref. 5.)

The dynamics of the rigid airplane are considered in the
second part. The dynamic system is now represented by a
set of three simultanecous ordinary differential equations,
rather than one as in reference 2; nonetheless, the problem
of calculating the required transfer functions is still one of
simple algebra.

The next part is concerned with the small flexible airplane
and thus has direct application to fighter-type airplanes and
guided missiles operating at relatively high speeds, in addi-
tion to serving as a preliminary to the last part of the report.
The dynamic system is now represented by a partial differ-
ential equation, and the calculation of the fransfer functions
requires the solution of ordinary differential equations.
Once these functions are calculated, however, the statistical
techniques are the same as before, as a result of the fact that
the lateral variation in gust intensity is ignored. Either
modal or numerical-integration approaches may be used to
analyze the dynamics of & swept-wing airplane with arbitrary
stiffness and mass distribution. Although modal approaches
bave usually been preferred in the past for similar problems,
it was believed that, in view of the highly complex nature of
modern aircraft structures and the advanced type of com-
puting machinery required and generally available for their
analysis, the numerical-integration approach would be
preferable and it has, therefore, been used.

The last part contains the analysis of the large flexible
airplane. The statistical problem is now that of a system
which is characterized by a partial differential equation
with time and a space coordinate as independent variables
and which is subjected to a random input that varies in time
and space, so that more is required than the transfer func-
tions from the gust intensity at one point on the wing to
the stresses at another. The particular statistical problem
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presented by this case is considered in some detail, and the
appropriate transfer functions are then obtained by using
the numerical-integration approach presented in the preced-
ing part to solve, in effect, the ordinary differential equations
which describe the wing deformations at any given fre-
quency.

SYMBOLS
A aspect ratio
b span
k) Theodorsen function
c, . lift coefficient, L/gS
C, lift-curve slope
C, rolling-moment eoefficient, L’/qSb
C, coefficient of damping in roll, defined as positive

for positive damping

Ch, damping-in-pitch derivative

Cn, static pitching derivative

¢ chord, parallel to plane of symmetry

c average chord, S/b

cr section lift coefficient at station y, I/gc

El bending stiffness

& distance from section aerodynamic center to shear
center, fraction of chord

€ distance from shear center to section center of
gravity, fraction of chord

& distance from shear center to the midchord point,
fraction of chord

A distance from shear center to the ¥-chord point,
fraction of chord

G(y, n) dimensionless lift-influence function (Green’s func-
tion for the spanwise lift distribution)

GJ torsional stiffness

g acceleration due to gravity

H(w) response to sinusoidal oscillation, Fourier trans-
form of h(t)

L) indicial-response function

I, mass moment of inertia about X-axis

I, mass moment of inertia about Y-axis

Jo 1. Bessel functions of the first kind, order 0 and 1

KoK, modified Bessel functions of the second kind, order
0 and 1

K integral of K,

k reduced frequency, «¢/2U

k’ dimensionless frequency, wL*/U

L lift

L rolling moment

L* integral scale of turbulence

l distributed lift per unit distance along the span

M pitching moment

My bending moment

Mz twisting moment

m mass (of airplane, unless designated otherwise by
subseripts)

m distributed mass per unit distance along the span

My " distributed twisting moment (about axes perpen-
dicular to the plane of symmetry) per unit
distance along the span

q dynamie pressure
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r radius of gyration about center of gravity; longi-
tudinal displacement corresponding to time
displacement 7

S wing area
L*

§ scale parameter, 7

t time

U mean flying speed

% longitudinal component of gust velocity

Up horizontal component of disturbed motion

v lateral component of gust velocity

w weight of airplane

w vertical component of gust velocity

w, vertical component of disturbed motion

x coordinate along mean flight path

Ar distance from intersection of elastic axis and root
chord to airplane center of gravity

z, tail length, distance from airplane center of
gravity to aerodynamic center of tail

x/ modified tail length, distance from intersection

of elastic axis and root chord to aerodynamic
center of tail
Y coordinate perpendicular to plane of symmetry
coordinate in plane of symmetry perpendicular to
mean flight path; vertical deflection

0

« inclination of chord to X-axis

¢ span ratio, b/L*

T'(y) autoconvolution function for y(y)
v(y) dimensionless lift distribution, ¢c,fcCy

() dimensionless lift distribution in roll, cc,/cC;,
7 variable of integration corresponding to ¥
a angle of pitch
A angle of sweepback
p mass density of the air
T time displacement, argument of time-correlation
function
d the power spectrum & in the case of axisymmetry
3 two-dimensional power spectrum (double Fourier
transform of )
(k) Sears function (unsteady-lift function for gust
penetration)
@ one-dimensional or point power spectrum
@ two-dimensional power spectrum (single Fourier
transform of ¢)
|4 one-dimensional or point correlation function
¥ two-dimensional correlation function
w frequency of oscillation
Subscripts:
e,€ effective
fuselage
wing root
tail

horizontal component of turbulence
wing; vertical component of turbulence

—rmrm g @ @ s S

latrix notation:
] square or rectangular matrix
] diagonal matrix
1 TOW matrix
} column matrix

Dots over symbols indicate derivatives with respect to
time.

AERODYNAMIC FORCES RESULTING DIRECTLY FROM
ATMOSPHERIC TURBULENCE

The motions of & rigid airplane depend on the overall
forces and moments, whereas the stresses of a rigid airplane
and the motions and stresses of a flexible airplane depend on
the distribution of these forces, as well. This part of the
report is concerned with the calculation of the integrated
and distributed forces and moments directly due to atmos-
pheric turbulence when the spanwise variation of gust
intensity has to be taken into account. (The forces and
moments caused by the motions which result from the forces
treated in this part can be calculated by conventional
methods and will not be considered here, although the com-
bined forces will be considered in the following parts.)
Thus, this part serves as a basis for all the material presented
in the later parts pertaining to the large airplane, and, hence,
the fundamental notions required for an analysis of the large
airplane are introduced here and discussed in some detail.

The basic approach is as follows: First, the instantaneous
value of the quantity of interest, such as the lift, is expressed
in terms of the instantaneous gust intensity at a point and a
suitable influence function. For the lift this influence func-
tion can and will be identified with a certain lift distribution
on the given wing in reverse flow; the same procedure may
and, in the case of the rolling moment, will be followed for
other integrated forces. On the other hand, for the local lift
the influence function is the Green’s function for the three-
dimensional unsteady-lift problem and cannot be identified
with an easily calculated Lift distribution on the wing in
reverse flow. Inasmuch as no knowledge concerning this
function appears to be available, a method of calculating an
approximate Green’s function for this problem is outlined
herein. The required influence functions for integrated
effects can be synthesized from this function, and if the
associated lift distribution in reverse flow cannot be calculated
conveniently this approach may be preferable. This tech-
nique is illustrated here by means of the bending moment.

The next step consists in using the expression for the
instantaneous value of the given quantity to calculate a
correlation function for this quantity in terms of a correla-
tion function of the normal component of the atmospheric
turbulence. The power spectrum for the given quantity
can then be obtained by taking the Fourier transform of
its correlation function. This power spectrum is considered
herein to be the desired end resul, because the mean-
square values of the quantity and its derivatives can be
obtained from it, and other statistical parameters of interest
can be obtained from these mean-square values. Several alter-
native approaches for calculating the aforementioned spec-
trum, either from the correlation function or directly from
the spectrum of atmospheric turbulence, are given in con-
nection with the lift and are directly applicable to other
quantities as well.

In this part of the report the assumption is made that the
influence functions of concern can be written as products
of & function of time alone and a function of distance along
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the span alone, and advantage is taken of this simplification
in calculating the desired spectra. This restriction is
removed in the last part of the report, where the influence
functions considered cannot be separated into space-
dependent and time-dependent constituents, and so the
approaches outlined there are generalizations of those
presented in this part; they may also be used for the calcula-
tion of the spectra of the quantities considered in this part
if the assumption concerning the influence functions is
not valid. i

DEFINITIONS OF STATISTICAL PARAMETERS

As pointed out in the introduction, the intensity of the
vertical component of turbulence w(f) is a random process,
g0 that the resulting forces can also be known only in a
statistical sense. The purpose of this part is to calculate
certain statistical properties of these forces, namely, their
mean-square values, their correlation functions, and their
power spectra. The fundamental principles involved in
statistical analyses of the type considered herein are ex-
pounded in some detail, and citations of the literature on
the subject are given in references 1 and 2. These funda-
mentals will therefore not be repeated here. However,
both for the sake of ready reference and inasmuch as the
statistical terms are not always defined in the same manner,
the forms that are used herein are indicated in the succeeding
paragraphs.

The time average of a time-dependent quantity is design-
ated by a bar placed over the symbol,> and is defined as
follows: ’

- .. 1 (T
f= ﬁi’i ﬁf_T.«:-(t)dt

The assumption will always be made that this limit exists
and is invariant under & translation of the origin of time.
This assumption implies that the processes considered here
are stationary in a statistical sense.

The mean of & random process f(f) is defined as its time
average, and is always assumed to be zero. In dealing
with processes with nonzero mesan this analysis is thus
pertinent only to the process which consists of the difference
between the original process and its mean value. Similarly,
the mean-square value of a random process f(f) is defined-
as the time average of the square of the process, so that

F=tinap | P
The time-correlation function of f(¢) is defined as
¥ =@+
so that
Fr=4,(0) -

and the power spectrum of f(f) is defined as the Fourier

3 When no possiblility of confusion exists, a bar Is also used to designato a space average,
as In the case of ¢ and 7. Also, for the components of turbulence the carrelation functions
depend primarily on space displacements and can be defined by space averages. For the
sake of consistency, however, they are considered to be defined by time averages,
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transform of the correlation function:

O Wt oL

1 (= -2
=_;[7f_me 'Urgb,(%r)dr

The second form is the more convenient one when ¥, repre-
sents more nearly a space correlation than a time correlation,
8o that it depends directly on a space displacement r= U~
rather than on a time displacement . For the purposes of
the analysis presented herein, the gust or input correlation
functions have this property, so that, for instance, ¥, may
be defined as

Yu(r)=w(Hw <t+§)

By virtue of the reciprocal properties of Fourier trans-
forms and the symmefry of ¥,(r), which is & direct conse-
quence of the assumed stationarity of f(f), 77 may be ex-
pressed in terms of the spectrum of f as

= " et do (1)

If f(¢) is the input of a linear system, the power spectrum
of the response z(t) of the system is related to the power
spectrum of f(f) by

¢s(0) =|H (@) es() 2)

where H(w) is the transfer function of the system, that is,
the complex amplitude of the response of the system to unit
sinusoidal input. Hence, H(w) is also the Fourier transform
of the indicial response k() of the system, which is defined
herein as the response of the system to & unit impulsive
input:

H(w)= f et @)

where the lower limit could be taken as zero, since A(f) is
zero for ¢<C0. Conversely, h(f) can be obtained from H(w)
by means of the inverse of equation (3):

by =o f e H (@) do (30)

The mean-square value of the response can then be ob-
tained by integrating its spectrum. Similarly, the mean-
gquare values of the nth time derivative of the response can
be obtained from the (2n)th moment of the output spectrum.
For instance,

TGN ("
2= L u(®) dw
From' the meaﬂ-squa.re values of these derivatives other

statistical quantities of interest, such as the expected number
of peaks of the response per unit time, can then be calculated.
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LIFT-INFLUENCE FUNCTIONS IN UNSTEADY FLOW

At any time the lift on a wing which results directly from
atmospheric disturbances can be expressed for an unswept
wing as

to=["an [ MuypwOe—w0dy @

where h(t,y)dy is a lift-influence function which represents
the lift caused by an impulsive vertical gust of width dy
which at time =0 impinges on the wing at station y.

The influence functions required in equation (4) are diffi-
cult to calculate directly; methods for obtaining lift distri-
butions on wings of finite span in unsteady flow usually
require numerical solutions which do not lend themselves
readily to the analysis of angle-of-attack distributions repre-
sented by delta functions. However, by virtue of the reci-
procity theorems of linearized lifting-surface theory (ref. 6,
for instance) the lift influence function for a twisted wing in
indicial motion is equal to the lift distribution on that wing
during indicial motion in the reverse direction with uniform
unit angle of attack. The lift distribution in indicial motion
with uniform angle of attack can be calculated relatively
casily.

For the few cases for which calculations have been made
(namely, some unswept wings), this lift distribution tends to
be substantially invariant in time, except for overall magni-
tude. For instance, the calculations of reference 7 indicate
that the lift distribution of an oscillating rectangular or
elliptic wing in incompressible flow is substantially inde-
pendent of frequency, so that in indicial motion it is sub-
stantially independent of time. This simplification may not
be valid for swept wings.

The lift influence function can then be written as

Wt 9= ba(®) YQ) )

where v(y) defines the steady-state lift distribution for
uniform unit angle of attack: ’

YY) = —-C,

and where k. (f) describes the variation of the overall magni-
tude of the lift as a function of time after entry into a sharp-
edge gust and may be written as

Cr a8 d Ut)

745

hL(t)_

In turn, %, is the lift response to a unit sharp-edge gust
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normealized to & steady-state value of unity and is, as in the
preceding equ&mon, usually expressed in terms of semlchord

lengths traveled = /2 The time derivative is taken here be-

cause the response wanted is the one to & unit impulsive
gust rather than a sharp-edge gust. -

The Fourier transform Hj(w) of this function A.(f) is
proportional to a function ¢(k), which may be termed the
generalized Sears function because for two-dimensional in-
compressible flow it is the Sears function:

01, QS

Hy(w)=—p—9(k) . (6)

where

k=

Sk

The function Hp(w) represents the complex amplitude of the
lift due to sinusoidal gusts of unit amplitude and is thus the
transfer function from the gust to the lift.

Actually, only the absolute square of ¢(k) will be required.
For two-dimensional incompressible flow the following
approximation is given in reference 1:

This expression has the advantage of simplicity, although it
is somewhat in error compared with the absolute square of
the Sears function at very low frequencies, a fact which could
be remedied by using the approximation

1+ak

l¢0 P~ o

where ¢ i8 about 15 for a good overall fit to the exact expres-
sion. However, the behavior of the Sears function itself at
very high frequencies is unrealistic, because its absolute
square goes to zero as 1/k, whereas for any nonzero Mach
number and any finite span the absolute square of the gen-
eralized Sears function can be shown to tend to zero at least
as rapidly as 1/k*. As a result of these discrepancies, the
approximation given by equation (7) and, for the same reason,
the absolute square of the exact Sears function, cannot be
used to obtain moments of the lift spectrum, that is, values
of the mean-square derivatives of the lift, although they may
be adequate for calculating the mean-square value of the
lift itself in many cases, particularly when absolute accuracy
is not required. Whenever possible the values of Iqb(k)l’
given in reference 8 for the plan form and Mach number of
interest should be used.

MEAN-SQUARE LIFT AND ITS SPECTRAL RESOLUTION FOR THE UNSWEPT WING

Basic equations.—The correlation function of the lift can be expressed, by virtue of equation (4), as

o e on e .
Yi(r)= J f f f Rt y0h(t ) DO =10, g0 w{U GF—12),75) dydydtidts ®
—o J—w Jop2 J-w2

where the averaged product on the right side represents & velocitjr correlation function.

This function depends in general

on both space and time displacements. However, if Taylor’s hypothesis is made, the time displacements are equivalent to
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longitudinal space displacements.
space displacements. Thus, for homogeneous turbulence,

The velocity correlation functions are then functions only of longitudinal and lateral

@1 UG PwE+EFT G0,y F N =bu(t+Ur,7) (®)

/

In addition to Taylor’s hypothesis and the assumption of homogeneity, the turbulence is assumed to be axisymmetric

with respect to vertical axes, so that ¥,(%n) is & function only of yE4 7%

function ¥, so that

This function is the ordinary space-correlation

Vo070 =4O+ 1)

and, hence,

© © b2 b/2
= [ 77 " benudhts e WO g0 dydusdindt

If the assumption implicit in equation (5) is now made,
the preceding equation can be written as

b= [ [ bt ) b0+ u—t)) ddts - 10)

where
be =3[ [ VT G100 1) dy dys
= {1 W WTT ) dn - an
where, in turn, T'(y) is an autoconvolution of v(y) defined by
r(n)=3 _—; 1) Yy+n) dy (12)

The validity of equation (11)- can be demonstrated by

performing the integration in the y,,y; plane as indicated in -

the following sketch:

Yesntm

Y2
Yo

b

2

/ |

_b 0 b A
2 2

_b

2

That is, integration is performed first over ¥, with a variable
n=y;—7; held constant. For this integration ¢, is constant,
50 that only ¥(¥,) and v(,-+1%) are involved, and the result
is & function of 5 which is one-half of the function I'(y) de-
fined by equation (12). The second integration is then per-
formed over 3, yielding equation (11) except for a factor of X.

\

In this process, only the part of the square above the line

ys=1y; 18 covered. However, by a similar process, the part

of the integral corresponding to the part of the plane below

this line can be evaluated and shown to be equal to the first

part, so that by defining I' as in equation (12), both parts

are taken into account simultaneously in equation (11).
The quantity

W, = Vo, 0)

= [T vt an

may be considered an averaged mean-square vertical com-
ponent of turbulence; ¥,,,(Ur) is then the corresponding cor-
relation function, and the Fourier transform of the latter,

Pug(©) =;1ﬁ f _}'*—U(Ur) Yo, (U7) d(U7) (13)

is the corresponding power spectrum.

Once ¢,,(w) has been obtained, the power spectrum of the
1ift can be obtained by taking the Fourier transforms of both
sides of equation (10). The result is

- on(0)=|H1()|*0w, () (14)

where H(w) is the transfer function defined in the preceding
section. The mean square of the lift can then be obtained
by integrating its spectrum, as indicated in equation (1).

Equation (14) has the same form as the corresponding
equation for the case where spanwise averaging of the effects
of turbulence is not taken into account (see eq. (2) and ref,
1), except that pe(w) is now replaced by ¢.,(w). Thus, the
spectrum of the averaged turbulence must approach that of
the unaveraged turbulence when the span approaches zero,
as may be seen to be the case from equation (11) and the
definitions of v(y) and I'(y).

Two alternative approaches.—The defining relations for
¢w,(w), equations (11) and (13), do not necessarily represent
the best method of calculating it in any given case. A slightly
different expression appears to be more convenient in general,
It consists in substituting equation (11) into equation (13)
and inverting the order of integration to yield

o= [ Tpuon) dn (15)
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where

|
go that

sulw =g [ T TEERDUT) )

ﬁzw(wyo):q’w(w)

A third approach, which has certain advantages over the others, is similar to the one that has been used in reference 5.
In this approach the assumption of axisymmetry is not made initially, and use is made of the spectrum

g’wo‘ly)‘ﬂ)=$fj f:’ et O“E+Mq)$w(sr77) d;.: d"l

The correlation function y,, (Ur) can then be written as

(178)

b/2 b/2 @ © ~
b= [ [ v v dnding [ [ e 8.0,

Substitution of this expression into equation (13) and then
interchanging the order of integration yields:

vl =gz | & fne | E O s
where
~ 1 b/2
o= [ 1) evdy

and is, as 2 result of the symmetry of ¥(y), real and sym-
metric in A.

Now, if the turbulence is axisymmetric, &,, depends only
on A=y/A2+N? that is,

gwo\l ,)\2) =P,y )\12+)\22)

so that the expression for ¢, (w) becomes

euld=g) 0 {J(EY pe)Boa as)

where &,,(2) is related to ¥,,(r) by

(17b)

Bu() =2 [ "1 Jo) i)

Although the spectra used in the last two approaches have
been defined by expressions involving the point correlation
function y¥,{r), they can be expressed equally well in terms
of the point spectrum ¢,(w), so that if, say, an experi-
mentally obtained point spectrum is to be used, it need not
be transformed into a correlation function before it can be
used in these calculations. The required relations are

(19)

and

‘I’m()\)=—‘¥ u:so(w) ZwT—)‘:,’—U’)_ﬁdw (20)

where the notation [~ is used to specify that the finite part

- of the integral is to be taken, an operation which may be

performed by integrating by parts and ignoring the infinite
part, so that, in terms of a proper integral,
202 ("= dpy(w) dw

T Jaw do  JA N

@‘wo‘)=

- Also, the function ®,(\) can be obtained from @,(w,7) by

means of either of the relations
1 bl -
2=y [ epu(0,n)dn

2 @ .
=7‘T]' 0 ‘Pw(}‘Uy ﬂ)dﬂ

Results of calculations.—In order to illustrate the magni-
tude of the effects under consideration, calculations have
been made for & uniform loading v(y)=1 and & point correla-
tion function which has been used in references 1 and 2 and
appears to fit experimental data (vef. 4) fairly well over a
large portion of the significant frequency range, namely,

Ya(r) =u7(1_%LLm)g_,,.,L.
80 that

( )_u_ﬁL* 14-3%"2
/ P TIT (1R

where L* is the integral scale of turbulence, which is here
defined as

_2(°
L*—E,J; Yol(r) dr

and where

k'EU

This correlation function has the drawback that-the mo-
ments of the spectrum associated with it are infinite, so that
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it implies a process with infinite mean-square derivatives,
but it is quite useful if only the mean-square value of the
process itself is of interest.

For uniform loading,
=9(1=-2
T (=2 (1 3
and

2
5 )_sm 5

M=%

2

and for the given correlation function,

()~

w L y 143k
U LL* 1+E*

;w("’,y)

@ mrs(@e)]

where K, and K, are modified Bessel functions pf the second
kind, and
SufL*® k2
< 3 =
O ="

The mean-square average gust intensity for this case is
given by
—_— 1_6—3

B8

where 8=b/L*, and is shown in figure 1 (a). The correlation
function ¢, is given by

’=
(]

'l"m,(f)———"% ¢rf{1<cr; sinh! g)—a"ﬁ:) o; sinh“‘g)-l-

where o=r/L* and where f{o(a;a) and f{l(a ;0) are incomplete
modified Bessel functions of the second kind defined by

E.(a;0) Efa cosh ng =7 b 2 43
0

The spectrum ¢,,(w) is given by
@=C2 1
P, ﬁﬁ = (1+k12)3
BV1+E2 Ky (BV1+E D]+ (1—3k" ) [2—

28VIH R 2K, (BVIFED — B (1+E DK (BV1FED) ]}
where Kiq() is the integral of K,y(z): )

{3k281FE2 [Kio(BV1HE?) —

| Kig(@)= f "Ko(e)dr,

The functions ¢, and ¢,, (normalized with the averaged
mean-square turbulent velocity) are shown in figures 2 and

LO -

(a)

bIL

.8
A—
W
e 20 40 60

A, deg
(a) Unswept wings.
. b
(b) Swept wings, T* oon A=0.5.

Figure 1.—The mean-square averaged vertical component of
turbulence.

3, respectively. The effect of the span ratio on the normalized
correlation function of the averaged turbulence may be seen
to be relatively small, so that the effect on the unnormalized
correlation function is primarily the decrease in overall
level given by the ratio of w,? to w®. A similar statement
may be made for the power spectrum. If the power spectrum
were not normalized the averaging effect of the span would
tend to reduce the intensity of the spectrum at all fre-
quencies, but the high frequencies would be atienuated
much more than the low ones, as might be expected. In
fact, although the unaveraged spectrum decreases as w™2 at
high frequencies, the averaged spectrum decreases as w2,

The asymptotic values for /L*— o are shown in figures
2 and 3 in order to indicate the nature of the functions
considered here when the scale of turbulence is small com-
pared with the span, as may be the case for a wind-tunnel
model responding to natural or artificial tunnel turbulenco,
or for a buffeting wing or tail surface, although this condition
is not of practical concern for the gust-load problem.

The power spectrum of the lift is equal to the product of
the power spectrum ¢w,(w) and the absolute square of the
transfer function Hi(w), as indicated in equation (14).
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Fraure 2,—The correlation function of the averaged vertical
component of turbulence.
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Fiaure 3.—The power spectrum of the averaged vertical component of
turbulence. .

Inasmuch as this lift is not an end in itself but only one
of the parameters that enter into the calculations of the
motion of the airplane, its mean-square intensity is of little
practical significance; its spectrum is the quantity needed
in further calculations. However, if the mean-square
intensity is wanted for any reason it can be obtained by
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integrating the spectrum. Thus, for instance, the approxi-
mate expression for [¢(k)|* given by equation (7) and the
spectrum ¢,(w) used for the precedmg celculation yields
-the mean-square lift:

143(52)

Do 2L )i 1 e >T(4 log &)

8

1
——a
+(3;)
where

L*

Em

and, in view of the observation that much of the turbulent
energy is contained in a region for which the span has a very
small effect on the (normalized) spectrum, this equation
should serve to furnish an approximation to the mean-
square lift for nonvanishing span, provided w2 is used
instead of w?. However, the mean-square values of the
derivatives of the lift cannot be calculated in this simple
menner, because the deviation of the normalized averaged
spectrum from the point spectrum at high frequencies cannot
be ignored in calculating the moments of the lift spectrum.

MEAN-SQUARE LIFT OF THE SWEPT WING

For the yawed or sideslipping unswept wing, equations
(10) and (14) for the lift-correlation function and spectrum
are still valid if an appropriate lift-influence function is used,
and if the -correlation function for the averaged turbulence
is defined by

1 (b cos
¢“°(UT)=b cos A_L

where I'(y) now pertains to a lift-distribution function
v(y) which is appropriate for yawed motion and is defined for

b b
—5 08 ASysg
of the vertical component of turbulence is then

—_— 1. b cos A 7
w‘2=b cos Af T'(n) "b"( 0s A) dn

3 I‘(n cos A) ¥u(n') dn’

T'() $o((Tr+1 tan A)+) dy

cos A. The mean-square averaged intensity

where 7’ = c—"—- Thus, this mean-square intensity is un-

08 A
affected by the yawing process, except for the slight change
which results from the change in I'(y), although the spectral
resolution of the averaged intensity changes in the process.

For the swept wing both y—%; and |y:|—|yi| occur in the integral, so that the reduction of the double integral for
Yu(Ut) to o single integral (see eq. (11)) cannot be affected so simply. The double integral for the swept wing is

Vo (Ur)=ns f f ) v Vo (VT F Qo —=0) Fan AT+ (a—30)?) dys dya
¢ B _ped —vn

5626507-—~00——11

(21)
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From this integral, by using rectangular lift distributions
and the aforementioned point correlation function, the mean
square of the averaged turbulence as well as the corresponding
correlation function and power spectrum have been calculated
by numerical integration for various sweep angles A, the

(The decision to hold

ratio

B
cos A
foregoing analysis of the yawed unswept wing, which indi-
cated that the effects of sweep should be minimized in this
manner.) The results for w,? are shown in figure 1, and
the effect of sweep on w,% is seen to be small for this com-
parison. The calculated correlation functions and spectra
(normalized with respect to w,2) are not shown because they
agreed with those for A=0 within less than 1 percent for
most values of Ur and %/, respectively.

MEAN-SQUARE ROLLING MOMENT

In the preceding sections the averaging effect of the span
has been shown to consist, essentially, in reducing the
effective intensity of the turbulence sensed by the wing; thus,
it only modifies the forces present on 8 wing of small span.
If the analysis is extended to the rolling moment, however, a
new phenomenon appears. When a wing is so small relative
to the scale of turbulence that at any instant all of its points
experience the same turbulent velocity, the wing experiences
no rolling moment as the result of the direct action of
turbulence (although it may experience a rolling moment
indirectly as & result of the rolling and yawing motion caused
by the lateral component of the turbulence). On the other
hand, on a large wing the different intensities of the turbu-
lence at different points on the span give rise directly to a
net rolling moment, which then results in rolling motion.
In this section the mean-square value of this moment is
calculated.

At any instant ¢ the rolling moment L’() can be written
in the same form as the lift L(¢) in equation (4); however,
according to the previously mentioned reciprocity theorem,
the lift<influence funetion A(t,y) is now the lift distribution
for an indicial roll with unit helix angle at the wing tip. If
the assumption of invariance of this distribution with time
is made, as for the symmetric case (see eq. (5)), then the
required lift-influence function can be written as

N being maintained at 0.5.

rather than 8 constant was reached as a result of the

ke, 0= K (' @)

where A'(t)= s and where the steady-state lift

distribution v (y) E

symmetric angle of attack.
The correlation function for the moment can then be
written as

now pertains to a unit linear anti-

we@)= " 7 @ ey Olrtn—td)andss @2)

" REPORT 1345—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where

1 b/e b/2
torUD=g5 [ [ o )y @b T G s
—b/3 J-0/2
b
= | v e ST (28)
where, in turn, in analogy with equation (12),

9 (®m—y
rm=3 |
—b/8

Hence, the second and third approaches indicated in the
section concerned with the mean-square lift (see eqs. (15)
and (16)) can be used to obtain

v @Y (y+ndy

b
pos@=F [T/ ()Belo,1)dn (24)
and
© 7-N2 \ ~
SR S )
where
1 (o
=i | oo
and

or (@)= Ow, (W) (25)
8o that the mean-square rolling moment can be obtamed by
integrating this spectrum.

A qualitative indication of the effect of span on the mean-
square rolling moment sensed by an airplane may be obtained
from the quantity ¥», (0), which represents the integral of

For a linear loading, v ' =6-L and

7+ (5h) ]

b A b
- cos ——sm 5

&)

Hence, using the aforementioned expression for the point
correlation function yields

the spectrum ¢w,’.

I (m)= 6[4 6

f"()\)=67,

L*'wa B“(ll‘Ekl’)‘ {[ 32+2‘3,’+ (16}3"+ﬁ/‘)Ko(ﬂ )+

(32!3’+6B'3)K1(ﬁ')]+k"[32—6ﬁ”— 168"K,(8')—
(328" +28") K. (B")+8"°Kin(8")]}

P, (w)=

where

B'=B1+k"*



THE RBESPONSE OF AN AIRPLANE TO RANDOM ATMOSPHERIC DISTURBANCES

and

12w’ [N

Y, (0)= T6+e "’(6+6B+3ﬁ’—l—63>:|

This spectrum and its integral approach zero Iinearlj as 8
tends to zero.

GENERALIZED AERODYNAMIC INFLUENCE FUNCTIONS ‘IN
UNSTEADY FLOW

The aerodynamic influence functions used in the preceding
sections define the contribution of a given station of a wing
to the total lift and rolling moment. In the analysis of a
flexible wing, and even in the calculation of certain properties
of 2 rigid wing, generalized aerodynamic influence functions
are required, which define the contribution of one station on
the wing to the lift at another station and thus represent a
Green’s function for the unsteady spanwise lift distribution.
No work appears to have been done on such functions. For
steady flow, apart from some calculations for supersonic
speeds which are based on the subdivision of a given wing
into & number of squares, the only available results appear
to be those given in references 9 and 10.

The analysis in this section is based on reference 8 and
consists in a generalization of the method presented therein
to unsteady flow. This method constitutes an attempt to
predict the lift distribution for any given twist on the basis
of knowledge concerning a few definite angle-of-attack dis-
tributions, and may therefore be termed a function-interpo-
lation method. For the present purpose, the presumably
known lift distributions are the ones for uniform angle of
attack in direct and reverse flow in a dimensionless form,
namely, c¢;/¢Cy; they will be referred to as yp(y) and vz(y),
respectively. (The function y(y) used previously is the one
now designated by vz(y).) Also required is the coefficient
of damping in roll 0. (Thelift-curve slope and the coeffi-
cient of damping in roll are the same in direct and reverse
flow by virtue of the reciprocity theorem, so that no distinc-
tion will be made.)

The approach of reference 9 then yields the following
approximate expression for the lift distribution due to any
angle-of-attack distribution:

F=Co {3 oy) + Kla@)—3 7a(y)) (26)

where
-1 )
a=3 'YR(y) a(y) dy
G b3
K=5"—p 27
G 4f0 Te(y) ydy &0

Values of K may be obtained from the information given in
references 9 and 10. As the aspect ratio tends to zero, K
approaches Y, whereas for aspect ratios approaching in-
finity, K tends to 1. The following relations can be obtained
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from elementary definitions and from the aforementioned
reciprocity thcorem: ‘

C,L_IJ‘ b2 cc;d
C;f " 1) o) dy

1 b2 1 b/2 ~
Bf—bl? 'YD(ZI) dy=-l;f-—b12 ’YR(’y) dy:l

b2
C’;—-b2 CT(c:l'y d
b2 ce
7 (—g) , ydy
-2 a3/

With the aid of these relations the lift distributions given
by equation (26) may readily be seen to have the correct
lift and rolling moment for all angle-of-attack distributions,
and to reduce to the exact lift distributions for angle-of-
attack distributions which vary linearly along the span. A
lift distribution which possesses these properties could readily
be obtained by approximating any given angle-of-attack
distribution by a suitably chosen linear one. However, this
procedure would yield poorer approximations than the ones
furnished by equation (26); for a parabolic angle-of-attack
distribution on a wing of very small aspect ratio, for instance,
this procedure would yield the lift distribution

with a bending moment too low by 17 percent compared
with the one of the exact lift distribution,

34 [ )

whereas equation (26) yields
_ ¥\
1+4(35) |

F=i V()

with a bending moment 8 percent too high. For very large
aspect ratios, yp and g both tend to the chord distribution
¢fc, so that the lift distributions given by equatlon (26) tend
to the correct limiting value,

(—@)A—)m Cra _a (28)

Therefore the accuracy of the results furnished by equation
(26) may be expected to increase as the aspect ratio increases,
whereas the accuracy of the other approximation is inde-
pendent of aspect ratio.

In this connection, it may be mentioned that “strip theory”
consists in using equation (28) for all aspect ratios and, hence,
is not very satisfactory for wings with medium and low aspect
ratios. For instance, for the case discussed in the preceding
paragraph, it furnishes a bending moment which is too low
by 25 percent for a delta wing, and too high by 25 to 100
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percent for tapered wings. (The two figures pertain to taper
ratios of % and 1, respectively.)

Substituting the value for & from equation (27) into equa-
tion (26) gives the following expression for cc,/c:

G b/2
=t |, (@)K 12) +DK 5G—n] Ya() Jals) dn
The expression in braces in the integrand is the desired gen-
eralized serodynamic influence function and will be desig-
nated by G(y,n), so that

Gy )=o) —K Ya@) +OE s@—n)] Yol (29)
and
ccl CLa

G e f Gy, () dn (30)

In the limiting cases of wings of very low or very high
aspect ratio, vp and vz approach a common value, say «.
Thus, for wings of very low aspect ratio,

5 @)+ sy—n)] Y() (318)

G('.l/"’l)::
where 6 is the Dirac delta (unit-impulse) function, and for
wings of very high aspect ratio,

Qly,m)=b sy—n) v(n) (31b)

The correlation function for this lift can then be written as
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which is the Green’s function associated with strip theory.
Thus, on wings of very high aspect ratio all the lift produced
by the local angle of attack at a given station is carried in the
immediate vicinity of that station, whereas on wings of very
low aspect ratio much of the lift is carried clsewhere. This
tendency for a given station to affect a greater portion of the
wing as the span decreases is, of course, to be expected.
The preceding analysis can be applied to the oscillatory
case at a given reduced frequency k, as well as to the steady
case. If the assumption of invariance of normalized distri-
butions with time or frequency is made, as before, then
vo(#), v=(¥), and K are independent of frequency, so that

_equation (30) can be written as

Ci, (k) gs (320)

1H="3L " ayaatiin
where @(y,7), defined as before, is independent of k. By
applying & Fourier transformation to both sides of this equa-
tion the following relation is then obtained for flight through
continuously varying turbulence (cf. eq. (4)), as modified by
the assumption stated in equation (5):

W=3 [ haitg [ Q@@ -t mdn  (32b)

where I(y,f) is the lift per unit span at station y and time ¢,
and where the function A.(¢) is the one used previously.

@ ® b/e b/2
o@=5" [ meh@dndngs [ [ gwm6@mv. SOGFERF G dndns

=L f f he(t) k() dtsdtse (U (-4 ti—t) )

where the function

N

(33a)

e @r=g: [ [ 0000 T a2 dnidn,

represents an effective correlation function, which when trans-
formed into the equivalent power spectrum ¢,, (w,y) can be

used to obtain the power spectrum for I(y,t) and hence its

mean-square value. Thus
1 2
i) (w) ='b_g I o(k) P(Pw. (w,y) (33b)

Before the calculation of ¢y, (w,y) is discussed, the function
Ve (Ury) will be defined in a somewhat more general form
than in the preceding paragraph in order to anticipate future
needs, namely

Ve, U5y
b2 — —— e
f ' f Guanm) Glynnd) VeV TP (D) d

If the assumption is now made that vz(y) and vp(y) are the

same, as is the case for all unswept wings and for wings of
very low or very high aspect ratio, they can both be identi-
fied with the function v(y) used previously, so that

Gly,n=[1—K) 7(y)+dK sly—n)] 7(n) (34)

and
Yo, Uryy)={ (1—E)%y (Ur)+K(Q1—EK) Y Uryn) +
¢'W,' (UT;’!/!)] +K’#/W(-\/U2T’+ (]/2—']/1)2) } '7(1/1) 7(1/2)

where ¢, (Ur) is the correlation function calculated pre-
viously for the averaged vertical component of turbulence,
and where

bee Tr=4 [ 1) WV T G=) d
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Similarly, then,

Pu (@192 = { (1—m2¢w. (@) +EK(1—-K) [6%,‘("’;?/}) + i
P, (0y2)]+E%u(wys—y) }ry)v(ys) (35)

where ¢, +(w,y) is the Fourier transform of ¥, +(Ur,y), so that

o/

veclo)=p [ Aplaly—aDin @)
-2

and thus represents an averaged form of the spectrum &,

introduced previously. (See egs. (16) and (19).) For uni-

form spanwise loading and the point correlation function

used previously, this function is

e D= (3K + o)~

a1 Ko(ar) —a:Ko(as)]+[a:2 K (ar) +a:* Ky (a2)] }

where

éiy

L*

a’lsafJE

VIHE?

and is shown in figure 4 for several values of Jbl//_2|

The more restricted form of ¢, required in equation (33b),

can now be obtained from the more general form given in

15
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~ F1gUre 4—The power spectrum gy, *(w, ¥)-

155
equation (35) by setting y,=y,=y in thelatter, to yield

w0, (@) =[(1 —K)*py, (@) +2K(1—K)pu,(w,y)+
Epu(o)V(y) (37)

MEAN-SQUARE BENDING AND PITCHING MOMENTS

When the variation of the gust intensity along the span is
taken into account, the mean-square lift 7 is not an ade-
quate index of the stresses in the wing, nor can the stresses
be obtained from the mean-square lift distribution Z(y)-
Instead, the mean-square bending and twisting moments, as
well as the mean-square vertical shear, must be calculated
directly.

In a manner a,nalogous to that employed for the lift and
rolling moment, each of these quantities can be expressed in
terms of a certain influence function which, by means of
the reciprocity theorem, can be related to a lift distribution
on the wing in reverse flow. For instance, for the root
bending moment the desired lift distribution is the one for
an angle of attack which is zero on one wing and proportional
to ¢ on the other, as may be seen from the fact that the bend-
ing moment can be expressed as

b2
My= f L) S @)y
—b/2

where
f(y)=0
f@) =y

so that, according to the reciprocity theory for unswept
wings in steady or indicial flow,

(y<0)

(¥=0)

b2 .
Mo= [ 1@waiy

Similarly, for the root shear the required lift distribution
corresponds to an angle of attack which is zero on one wing
and uniform on the other.

Such lift distributions can be calculated readﬂy. For
instance, for subsonic flow and unswept wings they can be
obtained from those given in reference 10; the lift distribu-
tion for the root bending moment is one-half the sum of a
linear symmetric and linear antisymmetric lift distribution,
and the lift distribution for the root shear is one-half the
sum of a lift distribution due to a uniform angle of attack
and a lift distribution due to deflection of a full-span aileron.

However, in some cases such calculations may be time-
consuming, and an alternative approach may be desirable.
One such approach consists in synthesizing the desired influ-
ence function from the generalized lift-influence (Green’s)
function discussed in the preceding section. In order to
illustrate the use of this approach, it is adopted in this section.

The bending moment at any stationy(O _S_y§g> and at
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any time ¢ can be obtained from the lift distribution considered in the preceding section as

b/3
Mp(y,t)= f W~ Dy’

= [ [T rwang [ oa @ et

=% f _i,hL(tl) dtxfjszﬂ WmwT (t—t),m)dy

where the influence function for the bending moment is

4 Styn—; [ =0 0W iy

so that, upon introducing the previously used function for G(y,n)

My,m=11—EK)M(y) +EMa(y,m]7(n)

where

- Maym=n—y (>)

and, hence, for the root bending moment,

Hence, the correlation function for the root bending moment is

by = [ [ oottt [ 70— Ry KO- EOMLO DO +

(38)
B3om)
(39b)
M= [ ey
May,m)=0 (n=y)
Ml(0)=% fo vy
MO m=n @>0)
M,(0,m)=0 (2=0)
M;(0,m)]+E2M(0,11) M5(0,12) Yy (1) V(1) WU (r+ti—ta)*H(m—n)Ddmdn,  (40)

The approach used in the preceding sections can now be used
to obtain the power spectrum of the root bending moment
by evaluating the inner pair of integrals of equation (40),
taking the Fourier transform of the result with respect to
7, and multiplying the power spectrum obtained in this

manner by

CL g 2 . .
1“7 |#(k)|* or by using one of the alternative

approaches indicated for the lift.
The spectrum corresponding to the inner pair of integrals
i, for K=1 and uniform loading,

%,"(w)_=,r—y-ﬁ%*’§—w{[(—64+2ﬂ'=)+8ﬁ'=Ko(%'>+

(32-;3'+ﬁ'3)K1 (%)]-Fk' 3 [B"‘Kio (%’>_|_ (64—6p’2) —

s ()@ —som (5) |}
where 8'=8/1F%", as before. ,

The integral of this spectrum i.s
_w AW
bey O=g| (—28+5 S +eoneat 12513 |

Examination of ¥, (0) indicates that, although the mean-
square bending moment tends to decrease as the span in-
creases, it decreases less rapidly than the mean-square lift,
with the result that the effective lateral center of pressure
moves outboard. Quantitatively, the distance from the
plane of symmetry to the effective lateral center of pressure
can be defined as the square root of the ratio of the mean-
square root bending moment to the mean squard of the lift
on one wing, that is, of the root shear. Although these mean
squares have not been calculated, the square root of the
ratio of ¥, (0) to the corresponding value for the root shear
increases by 15.5 percent as 8 increases from 0 to infinity,
with much of the increase realized at fairly small values of g.

For a swept wing the variation of the gust intensity along
the span results in a pitching moment which must be taken
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into account in calculations of the dynamic response of the
pirplane to continuous turbulence. This pitching moment
can be obtained in substantially the same manner as the
bending moment. Thus, if 7 is the station of the mean aero-
dynamie chord,

b2
M(t)=tan A f_m Tyl @) dy

—tan A} f  ha(u)d f f;Ma@)w(U(t—tl),p) dn  (41)

where

M= [ G-l @iy

30 that, with the previously used approximation to the
Green’s function,

| My () ={ (1—E) f—2M,(0)] +EG—|n) }7 ()

The correlation function, spectrum, and mean-square value
of the pitching moment can then be obtained in the manner
used in the preceding sections.

WING-TAIL CORRELATION EFFECTS

The tail strikes a given gust some time after the wing does;

as a result, o pitching moment arises which does not exist in’

steady or quasi-steady motion, nor if the airplane is very
small, because then the time lag is insignificant. This pitch-
ing moment can, for the purpose of the present paper, be
analyzed either in terms of the correlation between the gusts
at the wing and those at the tail or, if a time-lag term is
included in the indicial-response function of thetail, in terms
of the correlation between the wing and tail response func-
tions. The first point of view serves to exhibit the effect
under consideration more clearly and is adopted first; the
second is more convenient and is adopted in the subsequent
parts of this report.

In the somewhat artificial case of a small wing and tail
separated by a relatively large distance, only the distribution
of turbulence along a line (the flight path) rather than in s
portion of a plane is needed. The pitching moment due to
the vertical component of atmospheric turbulence can then
be written as

M@= [ hltdw@ =ttt [ o +U G-

where %, is the tail length, and where %, () and h,(f) are the
pitching-moment responses to indicial gusts hitting the
wing and tail, respectively, at {=0; both may include un-
steady-lift effects, and, if downwash effects are to be con-
sidered, h,(?) should include the contribution to the pitching
moment of the tail lift caused by the downwash at the tail

associated with the lift on the wing which results from the

indicial gust.
The spectrum of this moment can then be written as

w(w)=[|Hw(w)+H;(w)P—2R{(1—e’g")Hw*(w)H,(w)}]%@)
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where the symbols R{ } and * designate, respectively, the real
part and the complex conjugate of a complex number.
Obviously, when , approaches 0 the second term in the
bracket in this equation vanishes, so that the first term repre-
sents the perfect-correlation effect, and the second represents
the correction for imperfect correlation.

In order to furnish an estimate of the magnitude of the
effects under consideration, some calculations have been
made on the basis of the assumption that a real coefficient u
exists such that

H (w)=pH,(w)

which implies that the attenuation with frequency of the
contributions of the wing lift and tail lift, respectively, to
the pitching moment is the same. The ratio pis —1 for
neutral stability, and x>>—1 for stable flight; it is positive
when the aerodynamic-center location (tail off) is behind
the center of gravity, so that positive values of p are not
likely to be incurred with normal configurations and flight
conditions.
For this case,

eu() = (0 @420 (1= c0s 53 [t

and

D
(m(laﬂahme)_(l_l_#)g W\ ¥ E/2>

where

[ @) (1—eos
I |H,<w)|’%(w)dw

‘I,<L*’ o/2>

The function ¥ has been calculated for several values of its
arguments by means of the lift-attenuation function given
in equation (7) and the point spectrum used in the pre-
ceding sections, and is shown in figure 5. Also shown is the
ratio of the mean-square moments as a function of the
factor p which in figure 5 is referred to as M, /M, The effect.
of imperfect correlation is seen to be very large as the con-
dition of neutral stability is approached; the entire pitching
moment is then the result of instantaneous differences in
gust intensities at the wing and tail.

In general, however, the tail length and the span are of the
same order of magnitude, so that an analysis of the effect of
imperfect correlation between the wing and tail must take
into account the averaging effect of the wing span. The
pitching moment at any instant is then

MO [ hatedits [ 1@) 0@~y -

f T (@A) .0dn @20
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Freure 5.—Effect of tail length z, on the meansquare pitching
moment.

Hence, the power spectrum of this moment is

03¢ () =| H (@) [*u, (@) + | H, () Pou(w) +

zR{e‘f”'H,(w)Hw*@)}%,-(w,m (42b)
where ¢,,(w) is the averaged spectrum of equations (11)
and (13), and ©,,:(w,0) is the spectrum of equation (36) for
" y=0. (It should be noted that A,(#) is the response to an
indicial response which strikes the tail at ¢=0; if it were the
indicial response to a gust which strikes the wing at ¢=0,

the factor ¢'0" in the preceding equation would not be
required.)
DYNAMICS OF THE RIGID AIRPLANE

In this part of the report the motions of a rigid airplane
subjected to atmospheric disturbances are considered. This
part thus applies directly to those airplanes which fly at
relatively low speeds and do not experience any significant
structural deformations, and also serves as a preliminary to
the treatment of the flexible airplane in the later parts.

The assumption is made that the motions are small enough
to permit the use of linear approximations to the resulting

aerodynamic forces and to permit the linear superposition
of these forces. The longitudinal degrees of freedom
(pitching, vertical, and horizontal motion) and the lateral
degrees of freedom (yaw, sideslip, and roll) can therefore
be considered separately. The first two sections of this
part are concerned with the longitudinal motions of a small
airplane. The material presented here is thus a generaliza-
tion of the single-degree-of-freedom analysis presented in
reference 2. Mathematically, the dynamic system is now
described by a set of simultaneous ordinary differential
equations rather than a single one, but the problem of calcu-
lating the pertinent transfer functions is still one of simpla
algebra. The extension of these results to the large airplane
is effected in the third section, using the techniques developed
in the first part of this report. The lateral motions of n
large airplane are considered briefly in the fourth section,
and the combination of the stresses due to longitudinal
and lateral motion of a large airplane is discussed in tho
fifth section.
EQUATIONS OF LONGITUDINAL MOTION

The equations of motion of an airplane can be expressed
in several coordinate systems. The system which is gen-~
erally the most convenient one for analyses of airplane
stability and is generally referred to as stability axes, con-

‘sists of body-centered axes which are normal and parallel

to the relative air velocity and rotate with the airplanc as it
pitches or yaws. (See ref. 11, for instance.) The aoro-
dynamic forces related to this axis system can be measured
more readily in wind tunnels than those related to other
axis systems. In view of the very close relation of a stability
analysis to the problem considered here, these axes will be
used in this part of the paper, but in the analysis of the flexible
airplane in the subsequent parts of the report space-centered
axes will be used, because they are slightly more convenient
for that purpose.

The airplane will be considered to be in steady level flight
prior to disturbance. The motions studied will be the de-
viations from their mean values; for instance, the angle 8 con-
sidered here will be the difference between the disturbed and
the initial value of the angle of pitch. Hence, the motions
and forces calculated by the method indicated here must be
added to their mean values to obtain the total motions and
forces. ‘ :

Inasmuch as, for the purpose of a statistical analysis, tho
dynamic characteristics of the airplane are represented most
conveniently by its transfer functions, attention will be
confined in this section to sinusoidal gusts and motions.

For this case the linearized equations of longitudinal
motion can be written as follows (see eqs. II-193 of ref. 11,
for instance):

iw—Zy  —Zy  —ieU w,
—X, w—X, g Uy
—iMy—M, —M, ——ioM,] (0
Zo Z, w
=¢(B)| Xu X {u} (43)
M., M, ‘
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The stability derivatives which appear in these equations
are defined in table 1 in-terms of conventional acrodynamic
coefficients, and the -numerical values are given for the ex-
ample used in reference 11. (The value of the mean chord
is not given in ref. 11 but it is assumed herein to be 10 feet
on the basis of other information given in ref. 11.)

In analyses of the stability of a rigid airplane the quasi-
steady approximation to unsteady-lift effects is usually made,
in which, in effect, the forces corresponding to a steady
attitude, to constant disturbance velocities, and to constant
accelerations are considered. This approximation is justified
because the motions of concern are generally sufficiently
slow. For the same reason this approximation can also be
made in analyzing the response of an airplane to atmospheric
turbulence.

However, in this problem another type of unsteady-lift
effect occurs, namely, that related to the forces directly
attributable to the turbulence. This effect is here taken
into account by multiplying the quasi-steady values of the
forces due to gusts on the right side of equation (43) by the
attenuation function ¢(k). This procedure implies the
assumption that the airplane is small relative to the scale
of turbulence, inasmuch as no averaging effects have been
taken into account; these effects will be discussed presently.
Also, this attenuation function is strictly applicable only to
the normal forces.

The unsteady effects on the drag are not known because
of the relatively complicated nature of the mechanism which
gives rise to drag. If, however, the assumption is made that
upon entry into a sharp-edge gust the drag rises linearly and
attains its steady-state value in the time required to fravel

TABLE 1.—DEFINITIONS AND NUMERICAL VALUES OF
STABILITY DERIVATIVES

Derlvative Definition Numerical value for
the example
a8 .
7w f—m(ol,a+ Cp) —1. 430
2¢8
7w —m—U(CL'-l- CL) —0. 0955
b KR 0. 0016
b mD (O 2.) )
. 2¢8
X —;;U(CD_+ Cp) —0. 0097
qSé _
M, I,,UC"“ 0. 0235
. _gS8_ —o.0013
M 2I,,U?C"n'r 0. 0013
2¢8¢
M I,,,U(C"'+ Ca) 0
_a5¢ —
M, 2I,,UC"° 1. 920
L5 50 L T U S USSP UP P 30, 500
[ < F U S 660
Gy Lt e e 10
Altitude, fto oo oo e e 20, 000

0526597—00——12
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N chord lengths, the drag equivalent of |¢(k)[? is the function
1—cos 2Nk
2N

which, for NV equal to about § or 6, agrees fairly well with
[¢(®)[? in the region of main interest (A>1).

The unsteady moment is also difficult to predict because of
the paucity of knowledge concerning unsteady downwash
effects for wings of finite span. However, inasmuch as the

| wing lift contributes part of the moment and, through the

mechanism of downwash, determines to a large extent the

. moment contributed by the tail, the use of the lift attenua-

tion function for the moment appears reasonable for a first
approximation, and the use of the same function for the lift,
drag, and moment facilitates the analysis. -

For a more refined analysis, the time lag between the
instants at which the gust hits the wing and the tail must be
taken into account, not only for large airplanes, but even for
small airplanes if phugoid motions are important. (See ref.
12.) Also, the leg in downwash should be taken into
account for large airplanes and possibly also for small air-
planes in some cases. One way of achieving this result is
indicated in the next part of the present paper; another is
discussed in reference 12,

In equation (43) the unknown quantities w, and u, are
the normal and axial components of the disturbance velocities
of the airplane relative to the free stream. Inasmuch as the
coordinate axes rotate during the motion, the time deriva-
tives of these quantities do not represent the actual airplane
accelerations, which are required in analyses of the loads
experienced by the airplane and the degree of passenger
discomfort. If the deviations from a mean flight path are
assumed to be small, the accelerations normal and parallel
to the chord or longitudinal axis of the airplane are sub-
stantially the same as the absolute vertical and horizontal
accelerations Z and %, which can be obtained from the
relations

CB=—, 3 Ub
T=—u,—g0

The transfer functions for these quantities can then be ob-
tained by introducing these relations into equation (43).

‘In studies of the longitudinal stability of airplanes, equa-
tion (43) is rarely solved in the form given here. It is
usually reduced to two equations with two unknowns,
either %, and 6 (the phugoid case) or w, and 6 (the short-
period case), the short-period case being usually the one of
primary interest. The part of the turbulent energy con-
tained in the frequency range near the phugoid frequency is
‘relatively small, so that the phugoid case has no significance
for the analysis of loads and accelerations resulting from
atmospheric turbulence. Hence, the short-period -case,
which ignores the phugoid oscillations, furnishes an ex-
cellent approximation to the loads and accelerations asso-
ciated with the longitudinal motions of an airplane in turbu-
lent air. However, another two-degree-of-freedom case,
the one involving w, and u,, is useful in certain studies of
the effects related to the interaction of horizontal and vertical
components of turbulence.
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Both of these two-degree cases can be reduced to the single-
degree-of-freedom case involving only z (or w,). For air-
planes which have a large moment of inertia in pitch this
simple case furnishes & good approximation. It has been
studied in reference 2, where substantially the same approxi-
mations to the unsteady-lift effects were made as are made
here, except that in reference 2 apparent-mass effects were
included. ‘(These effects are not included in the stability
derivatives used in equation (43) because they are usually
small—Jess then 1 percent of the mass of the airplane—and
are different for each degree of freedom. However, if
desired, the apparent mass pertaining to a given degree of
freedom can easily be added to the airplane mass in calcu-
lating the stability derivatives.) However, this approxima-
tion is more nearly valid for calculating peak loads pursuant
to an entry into a sharp-edge gust than for calculating the

response due to random turbulence. Consequently, in the -

following sections, attention will be confined to the short-
period case, although the analysis is equally applicable to
the other case and easily extended to the case of three degrees
of freedom.

SOLUTIOI& OF THE EQUATIONS OF LONGITUDINAL MOTION

Transfer functions.—If the degree of freedom pertaining
to z (or.u,) is ignored, the solution of equation (43) can be

written as
2\ _[H: () H: (w)] {w}

{,—,} 3 () B (@)1 Lu )
where the transfer function Hif(w) is defined by
— A% Bliot CF
— A+ ByiwtCo

where, in turn, the coefficients are defined in terms of the
stability derivatives (see table 1) by

HE () =¢(k) (45)

Ao= 1 . A?=\ —Zw,
Bi=Z,' (UM,+M,)
0;2= _U(Mwlzw_Mwa,)

The transfer function Hj(w) can.be defined similarly in
terms of the coefficients '

Bo=—(Zuot+M+UMy;)
00’:3-{ q‘Z w UM w

Atg =Mwl +Z¢,’M,’,
BL:= - (Mwlzw—Mwa,)
G50

In these equations a distinction has been made between the
values of Z,, and A, which occur on the right side of equation
(43) and are here designated by a prime mark, and those on
the left side of that equation. The primed derivatives
pertain to the lift and moment directly due to gusts, whereas
the unprimed derivatives pertain to the lift and moment due
to airplane motion; the reason for this distinction is discussed
in a later section. Furthermore, the coefficients A%, Bf, CF,
A}, B, and Cj are the same as the coefficients 4%, B, . .

except that Z,, Z,/, M,, and M,’ are replaced by Z,, Z./,

M,, and M,/.

With these transfer functions the mean-square values of
2 and 8 can be calculated from the spectra of w and u by

using equation (1), provided that the simultaneous action

of w and u is taken into account. In order to analyze this
effect the vertical acceleration Z will be considered, but the
analysis will be applicable to § or any other characteristic of
the airplane which responds to w and w. Furthermore, the
transfer functions need not be those considered in equation
(44), but can be those calculated for the three-degree-of-
freedom system or for a flexible airplane.

Normal-acceleration spectrum and mean-square value.—
For the present purpose the indicial-response functions
LZ(t) and Ri(f), which are the Fourier transforms of the
transfer functions (see eq. (3a)), are more convenient. In
terms of these indicial-response functions,

2= [ M@ dut [ B WU a

Then, if w(t) and u(t) are stationary in a statistical sense, the
correlation function for 2(f) can be written as

=" [ 130 B0 vO G+t +

RE(t1) i (t) YU (r+t1—12) +
RE(t) hi(ta) Yuu(U (r+t1—t2)) +
Rz (1) BF(ta) Yuu(U (—7+t1—1a))] dty dt
(46)

where ¥,.(U7) is a cross correlation of w and u defined by

Vuu(Ur)=w(z+ Ut) w(z+4-U(t+7))

Now, if the turbulence is isotropic, the mutually perpen-
dicular velocity components % and w at points in the X1
plane are statistically independent, and their cross correlation
is zero. Therefore, the two terms in equation (46) involving
Ywu(U7) vanish, and the power spectrum of % is

o3 (@)=|H% () Ppol(@)+ | Hi () Poulw) (7)

so that, generally speaking, the power spectrum of a response
which depends on both the horizontal and the vertical com-
ponent of turbulence is simply the sum of the power spectra
of the two contributions, provided the turbulence is isotropic.
(This statement can be shown to be true even if the distribu-
tion of the gusts over the span is taken into account.)

For the short-period two-degree-of-freedom case, then, the
contribution due to w is

(492t —[2420%—(BE)l2+(0%)*
o — 20— B+ Cy?

e [l o
and the contribution due to « can be obtained from the same
expression, but with the subscript and superseript w replaced
by u. However, the ratio of the two contributions is in the
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order of 4o?, where « is the trim angle of attack in radians,
measured from the zero-lift conditions. Consequently, ex-
cept at very high lift coefficients, such as those used in land-
ing, the contribution due to u is usually negligible compared
with the one due to w and is disregarded in subsequent
sections,

By means of the lift-attenuation function given in equa—
tion (7) and the point spectrum used in the first part of the
report, the integral for 27 has been evaluated (by using the
technique of partial fractions for the integrand) for the ex-
ample of reference 11. (The lift-attenuation function of
equation (7) has been used despite its shortcomings in order
to facilitate the analytic integration of the spectra.) The
results are shown in figure 6, as are the results calculated
similarly for the three-degree-of-freedom case, the other
two-degree-of-freedom case (horizontal and vertical motion;
referred to in the figure as the zero-pitch approximation),
and the single-degree-of-freedom case (vertical motion).
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Ficure 6.—Effect of scale of turbulence on the mean-square
acceleration of the example airplane.

An examination of this figure indicates that, at least for this air-

plane, inclusion of horizontal motions does not affect the mean-square normal-acceleration response to any significant

extent.
values of Z,, and M,.

These calculations pertain to a “small” airplane, and no distinction has been made between the prlmed and unpruned

The preceding treatment of the short-period case has the advantage of using readily avmla,ble mformamon concernmg

the characteristics of any given airplane.
tions is preferable.
gusts again being neglected) as

For the purpose of trend studies a dimensjonless form ‘of the transfer func-
The preceding equation for 23 can be written in dimensionless form (the contnbutmn of horizontal

1\ :
Z’_..( ) lqr,(k)lz 4 (,,-—-) k‘l Upu(w) di’ (482)
. gie) U2 B—2(k =)+ (ki) Lo
and, similarly,
b_zl K qutlﬂ_(‘:’)dkl
T (gc ) o [( Y| [ o= S AR e L (48b)

where « is the mass parameter with

__sm —\/M,Zw . 4<Z,,+M,+UM )

T CropSe - so that

v is the dimensionless damping coefficient

¢ log, 2
=3U Ty

T); is the time to damp to one-half amplitude, which is
given by .
log,2_ 1 .
Ty 5t MAUM)

g0 that

_1(1_1_@%)
= 2T,

and %, is the dimensionless frequency of the shorb—peﬁod
oscillations,

k_\/ K 12 ) ( 1mcza,,,+0)

Thus, for this two-degree-of-freedom case the dimension-
less mean-square responses are functions of only two addi-
tional parameters, which are dimensionless forms of the main
characteristics of the short-period case (the short-period fre-
quency and the time to damp to one-half amplitude), beyond
those encountered in the single-degree-of-freedom case,
namely, the mass parameter x and the scale parameter

L*
=R

Bending-moment spectrum and mean-square valne.—For
a small airplane the instantaneous bending moments at vari-
ous points on the span are proportional to the instantaneous
normal acceleration. For instance, the root bending moment
can be written as

(49a)
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where L, and m,, are, respectively, the lift on and the mass
of the wing, and where 7 and % are the lateral distances to
the center of pressure of the lift on one wing and the center
of gravity of the mass of one wing. However, L, is propor-
tional to the lift Z on the entire airplane, which in turn is
proportional to the normal acceleration, so that

Lw=%mé

w=[3(7-27)]:

Hence, the spectrum and mean-square value of AL, are pro-
portional to the spectrum and mean-square value of 2z, re-
spectively, the constant of proportionality being the square
of the quantity in the brackets of equation (49b).

and

(49b)

SPECIAL PROBLEMS RELATED TO THE LONGITUDINAL MOTION OF LARGE
AIRPLANES

Single-degree-of-freedom case.—In the preceding sec-
tions the airplane has been assumed to be small in the sense
of this report, and neither the instantaneous lateral variation
of the intensity of turbulence nor the difference between

instantaneous intensities at the wing and the tail has been -

taken into account. In this section this restfiction is
removed by introducing the aerodynamic forces calculated
in the first part of this report into the dynamie analysis of
the preceding sections. The arguments advanced in the
preceding section for ignoring horizontal gusts and horizontal
motions are equally valid for the large airplane; therefore
these gusts and motions will not be considered here:

For. the single-degree-of-freedom case involving only
vertical motion the required modification for the normal
acceleration is very simple. For this case the transfer
function is -

B (0)=—d() 2% (50)

where Z,/, attenuated by ¢(%), is the stability derivative
for vertical gusts and, hence, represents the lift per unit
gust intensity. Therefore, if the result for the lift calculated
in the first part of this report is used, the mean-square
normal acceleration becomes

T [ 10 2 ) o

(The function @, (w) is defined in the first part of this
report.) This expression differs from the result obtained
in reference 2 only in that ¢.(w) is here replaced by ¢u, («).
However, even for the single-degree case the calculation
of the bending moment now becomes a considerably more
complicated problem, because the lateral centers of pressure
of the lifts due to the motion of the airplane and directly
due to turbulence no longer coincide. Equation (49a) now
becomes
7 L, CraS 2
My=—7T 02

d bf2
% f _ et d tlf e @ wUE—t),9dy (6D

_Me=.

yz+

where Oy, is the lift-curve slope for the entire airplane,
h.(t) is the response function used in equation (38), and
var(y) is the function M(y,n) used in equation (38), with y=0.
In the first two terms on the right side of equation (51),
2 and 3 can be related to w by means of h; (the Fourier
transform of the function H; presented in eq. (50)) and the
lift directly due to turbulence obtained in the first part of
this report, so that these two terms can be written in the
form

o 2
3w an 7 vy e@ et
and, hence, equation (51) becomes
Ma=¢ [~ an [ Bt )+
hae (2) Y@ w(U (t—11),9) dy (62)

The required influence function for the bending moment
is, thus,

hatoly, )= () Ve @)+ hae (DY) (53

Although the two terms of this function are products of a
time-dependent and a space-dependent constituent, as in
equation (5), their sum cannot be split up in this manner.
Hence, the techniques used in the first part of this paper
are not directly applicable. The general treatment of prob-
lems involving influence functions for which the assumption
of equation (5) is_not valid will be considered in the last
part of this paper. However, in this section a special
technique will be used that applies to cases for which the
influence function can be expressed as & sum of several terms
(two in this case), each of which can be expressed as a
product of two functions, which depend, respectively, on
time alone and distance along the span alone. (See also
ref. 13.) 'This approach is more convenient than the general
approach of the last part of this report when the number of
terms is two or, possibly, three. (Although in this section
only two terms will be considered, the generalization to
three or more terms is straightforward.) When the number
of terms is greater than three, the general approach becomes
more covenient.

If the value of Mjp given by equation (52) for ¢+ is
multiplied by the value for ¢ and the result is averaged, and
if the Fourier transform of the resultant correlation function
is then taken, the following expression is obtained for the
spectrum of the bending moment:

a3 () =26 [P, () Hae () P, ()
OR (H1(6) Hu*(@) }pu, (&) (54)

where the symbols R{} and * designate, respectively,
the real part and the complex conjugate of & complex num-
ber. In this equation Hy(w) and Hy(w) are the Fourier
transforms of ha(f) and hL(f), ¢u, (w) is the previously defined

averaged spectrum for the lift, and @, and ¢, are averaged
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spectra obtained in a similar manner but with the value of
T given by equation (12) replaced by

r=3 [ @)t ) dy

2 (G2)—n
T =
2(77) ) f—bl?

where the subscripts s and e refer to the symmetric and anti-
symmetric parts of v, respectively.

The contribution of the antisymmetric part of v, to Iy
and, hence, to the spectrum for the bending moment stems
basically from the asymmetry of the instantaneous distribu-
tion of gust intensity over the span. This asymmefry gives
rise to a rolling moment (which was considered in the first
part of this report) and, hence, to rolling motions, which
contribute additional bending moments due to the aero-
dynamic and inertia loads associated with these motions.
If, for the purpose of calculating the bending moment due
to symmetric flight through turbulent air alone, these mo-
tions are disregarded, then the contribution of v, to I
should be disregarded as well. The problem of combined
symmetric and antisymmetric motion will be considered
presently.

As pointed out in reference 13, the mean-square bending
moment calculated in this manner may be smaller or greater
than the value calculated by ignoring spanwise variations
in gust intensity. If the mass of the airplane is almost
entirely contained in the fuselage, the decrease in the lift
which results from taking these variations into account
causes o decrease in bending moment. However, if most
of the mass is in the wing, the net bending moments (aero-
dynamic less inertia) for a uniform spanwise gust are very
small, and the effect of taking spanwise variations of gust
intensity into account is to increase the mean-square bending
moments.

Two-degree-of-freedom case—For the two-degree-of-
freedom (short-period) case the analysis given for the normal
acceleration in the preceding section can be extended as
follows: As indicated in equation (44) the transfer function
for z is now

(55)
(ar, @) Var, (y+0) +Yar, @) Yar, (y+m)] dy

H“’(w)_[ 1 “’2+a_7_ﬂf, fﬁf quZJUM] 2 o+
—Z.
[Iy —w’—IEBowzl-O]I My k) (56)

(The following analysis can be applied equally well to § by
using H} (w) instead of H} (v).)

If the expressions inside the brackets of equation (56) are
designated, respectively, by Hi(w) and Hy(w), and their
Fourier transforms by &,;(t) and hs(f), then, as a result of the
rlefinitions of Z,,” and M./,

2= @ Le—t) dut [ @) Me—w)dn 6D

where L() and M(t) are the instantaneous lift and pitching
moment due to the vertical component of atmospheric

turbulence, which have been obtained in the first part of
this report. The calculation of ¢;(w) or of Z% thus requires
not only the spectra of L and 2, the calculation of which
has been discussed, but also the cross spectrum of L and M,
which has to be calculated directly from equations (4)
and (42a). Theresultis

¢;<w>=|z'in<w)|=|H(w>|2%.<w)+|H,(w)|’[|Hw<w)|=¢,,,<w)+

lHl (“’) I2 ?’w("-’) +2R{ e’ﬁ" H, ("’) Hw*(“’) } ¢wa‘(‘°; 0):|+
2[R{Hi(0) Htw) H HH) o)+
RA{H (@) By¥6) HE B0 oo (@0)] 58)

where the first two terms represent the contributions of the
spectra of L and M, respectively (see eqs. (14) and (42b)),
and the third represents the contribution of the cross spec-
trum of L and M. TFor the present purpose the functions
H(w), Hy(w), and H (o) can be expressed as

- H(w)=m(—2Z.) ¢(k)
Hw(w)=m Az, (—Zw) ¢(k)
Ht(w)=[IWMw_m Az, (—Zw)] qb(k)

where Az, is the distance from the aerodynamic center (tail
off) to the airplane center of gravity. This definition of the
contributions of the wing and tail to the pitching moment is
based on the considerations that the direct contribution
of the wing can be estimated with good accuracy and the
total pitching moment is likely to be known from experi-
ments, so that the contribution of the tail (which includes
the effect of the wing lift on the downwash at the tail) can
be determined as the difference of the two. The functions
¢u,(@) and @, (w,0) have been defined in the first part of
this report. In view of the fact that the function ¢(k) con-
tained in some of the terms of equation (58) always appears
in terms multiplied by others which contain ¢*(k), only the
absolute square of this function is required, as before.

SPECIAL PROBLEMS RELATED TO THE LATERAL MOTION OF LARGE
AIRPLANES )

The equations of motion in the lateral degrees of freedom
(roll, yaw, sideslip) have the same form and can be solved
in the same way as the equations for the longitudinal motion.
(See pp. ITT-53 to ITI-67 of ref. 11.) Again it is convenient
to cast the problem in the form used in a stability analysis
in order to take advantage of the results of such an analysis.
For a small airplane it is necessary only to replace the terms
due to rudder deflection by corresponding terms involving
side gusts, namely,

Y;, 08 by ¥, 54’ ()
Lsgde by Logy o' (8)

Ny, 6z by Np%da'(k)
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where ¢’(%) is a suitable side-force attenuation function for
side gusts and the notation of reference 11 is used for the
other terms. The terms corresponding to aileron deflection
can be disregarded for the small airplane. In the lateral
degrees of freedom the small airplane thus reacts only to
side gusts. On the other hand, the large airplane also reacts
in the lateral degrees of freedom to vertical gusts through
the rolling moment calculated in the first part of the present
report. If this rolling moment is to be included, it replaces
the term L;, 8, used in reference 11.

Instead of treating all three degrees of freedom simul-
taneously, in stability analyses two one-degree-of-freedom
cases are often considered, namely, the one of sideslip alone,
with angle of yaw equal and opposite to angle of sideslip
(the Dutch roll case), and the one of rolling alone.

The Dutch roll case may be used for gust-load purposes
in connection with yawing and sideslipping motion due to
lateral gusts, provided the phase of the motion is not im-
portant.
the phase of a transfer function is important only in terms
involving cross spectra.) Also, the Dutch roll case may
prove useful in calculating the vertical-tail loads resulting
from flight through turbulent air, particularly if the human
or automatic pilot holds the wings substantially level by
means of the ailerons. However, in general it does not ap-
pear to be as satisfactory an approximation as the one-
and two-degree-of-freedom approximations for longitudinal
motion.

For rolling motions due to rolling moments, the single-
degree case of rolling alone appears to furnish a very good
approximation. Although the rolling motion causes yawing
and sideslipping motions, these motions do not appear to
reflect on the rolling motion. Thus, the rolling motion
which results from the rolling moment can probably be
calculated fairly accurately without regard to the other
lateral degrees of freedom. Furthermore, within the assump-
tion of small motions, the stresses associated with these
other lateral degrees of freedom do not generally contribute
appreciably to those associated with the longitudinal degrees
of freedom in the parts of the structure for which the latter
are critical, such as the wing (although they may be critical
for other parts of the structure, such as the vertical tail).
Therefore these degrees of freedom (yaw and sideslip) will
be ignored in the treatment of the large flexible airplane in
the last part of this paper. However, if chordwise bending
effects (deformations parallel to the chord) are important,
as they may be in some cases at speeds close to the flutter
speed, these other lateral degrees of freedom may have to be
included in the analysis.

For the large airplane, which r%ponds in the lateral
degrees of freedom both to vertical gusts and to side gusts,
t.he superposition of the resulting responses, such as stresses,
may be effected in the way indicated for the'interaction of
horizontal and vertical gusts. If the turbulence is isotropiec,
the vertical and lateral gusts are statistically independent
for points in the XY-plane, so that the spectrum of & given
response is equal to the sum of the spectrum of that part of
the given response which is due to vertical gusts and the

(As may be noted from the preceding sections,
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spectrum of that part of the response which is due to lateral
gusts.

COMBINATION OF THE RESULTS8 OBTAINED FROM ANALYSES OF THE
LONGITUDINAL AND LATERAL DEGREES OF FREEDOM

The instantaneous wing stresses depend both on the
motions in the longitudinal degrees of freedom (primarily
vertical motion and pitching) and on those in the lateral
degrees of freedom (primarily rolling). The purpose of this
section is to indicate how the stresses associated with
vertical motion and pitching can be combined with those
associated with rolling due to vertical gusts, particularly in
the case of a large rigid airplane. (A small airplane, flexible
or rigid, does not roll as a result of the action of vertical
gusts, and for the large flexible airplane it is more convenient
to consider rolling motion simultaneously with the other
motions, so that the superposition is effected automatically
in the process of obtaining the required transfer functions.)
For all airplanes the effect of side gusts can then be taken

“into account, if isotropy is assumed, by adding the stress

spectra directly.

In this section the instantaneous stress at a given part of
the wing will be assumed to be proportional to the instan-
taneous bending moment at that section of the wing, so that
consideration can be confined to this bending moment; also,
the airplane will be considered to be free to move in only
two degrees of freedom, namely, vertical motion and rolling.
The extension of the following arguments to stresses which
depend on the vertical shear and the torque as well, and the
inclusion of pitching as an additional degree of freedom, can
be effected readily and will not alter the conclusion reached
here.

When rolling motions of the airplane are taken into
account, the bending moment due to the aerodynamic forces
associated with rate of roll and to the inertia load associated
with rolling acceleration can be expressed in terms of the
rolling moment by a superposition integral. In turn, the
rolling moment can be expressed in terms of a superposition
integral involving the instantaneous gust intensities along
the span, the influence function v/(y) used in the first part

‘of the report, and an associated response function h,(f).

Hence, equation (52) is modified by the inclusion of & third
term and becomes

Ma(d= f dt, f [ () Y2 () hac (1Y) +
Rar(t)Y (U ¢ —t1) ) dy

If the spec'm'um for My is now calculated in the manner
used previously, the following result is obtained:

15(0) = EL5() P, () Elne () P, (@)+
PR {Ho() Hi*(w) bow, () + | Hi(w)on, (@)
PR H Vi) b, (@) (59)

where Hi(w) is the Fourier transform of ha(f), and where
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:pwcz(w) and <p,,q(w) can be obtained from equation (12) with
the following values of T3 and Ty, respectively:

9 [/ —y
I‘a(’)) ='b‘f
—-b2

Y @)Y @+o)dy
=3[ Y@y

(The function Ty(y) is four times the function I(y) con-
sidered previously in connection with the rolling moment.
This factor of four must be taken into account in hj(%).)
The spectrum ¢, may be considered to consist of two
parts: The first three terms listed in equation (59), but
excluding the contribution of var, to Pu, (see eq. (55)),

represent the contribution of the symmetric parts of
the instantaneous gust distributions or the contribution
associated with symmetric motion; the last two terms
and the contribution of vy, to iy, represent the contribution

of the antisymmetric parts of the instantaneous gust distri-
butions or the contribution associated with rolling motion.
Therefore, the power spectrum of the stress due to gusts
and combined symmetric and rolling motion resulting from
the gusts is the sum of the two power spectra (that for the
gusts and symmetric motion alone and that for the gusts
and rolling motion alone), provided the direct contribution
of the gusts is split up into a symmetric and antisymmetric
part and each is taken into account only once, in connection
with the appropriate type of motion. The cross-correlation
terms between the symmetric and antisymmetric contri-
butions to the stress can be shown to involve integrals which
contain products of symmetric and antisymmetric influence
functions and, hence, vanish, so that the cross correlations
are zero; hence, the two parts of the combined spectrum are
statistically independent and, therefore, directly additive.

DYNAMICS OF THE. SMALL FLEXIBLE AIRPLANE

The purpose of this part of the report is to consider the
transfer functions relating the stresses at various points of a
small flexible airplane to the vertical gusts which cause them.
The longitudinal and lateral degrees of freedom are still sepa-
rable, and only the longitudinal degrees will be considered;
the lateral degrees, which are involved in analysis of the re-
sponse to side gusts acting on the vertical tail, can be analyzed
in the same way. Therefore, for this case only one-half of
the wing need be considered as a result of the symmetry (or
antisymmetry, in the case of the lateral degrees of freedom)
of the problem.

The method which is outlined in this part consists in an
extension of the numerical-integration method of aeroelastic
analysis described in reference 14 to sinusoidal motions of the
nirplane. This extension takes into account the facts that
the aerodynamic forces now have out-of-phase as well as in-
phase parts and that vertical deflections must now be calcu-
lated separately because the structural deformations can no
longer be characterized by angle-of-attack changes. Also,
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the “rigid-body” degrees of freedom (vertical and pitching
motion of the airplane as a whole and structural deformations
of the tail) are now taken into account.

The result is a set of linear algebraic equations (which serve
as an approximation to the ordinary differential equations
that characterize the problem) for the airplane motions and
deformations in terms of the applied aerodynamic forces di-
rectly due to gusts. The desired transfer functions can then
be obtained from solutions of these equations at various fre-
quencies, and the power spectra of the stresses are given by
the product of the absolute square of these transfer functions
and the point power spectrum of the vertical component of
turbulence. The same equations may be used to calculate
with little additional effort certain aeroelastic effects, such as
the static aeroelastic deformations and the flutter speed,
which are usually obtained in separate analyses.

LOADS APPLIED TO THE WING

The loads applied to the wing stem from three sources:
The aerodynamic loads directly due to the action of the.
gusts, the aerodynamic loads due to the motions of the air-
plane, and the inertia loads.

The lift and pitching moment (about the elastic axis) per
unit span on & two-dimensional airfoil undergoing sinusoidal
angle-of-attack changes and vertical motions in incom-
pressible flow are (see ref. 15)

la=27rqc{ ok [(1+2e4ik)a—jk c/iz]Jr

(o) ety c/z}

M e=2mgc? {C’(k) e [(1—|—2e4ik)a—ik c/i?.]—

’Lk (32+33 )k’:l a——— /2} )

The terms multiplied by C(k) are referred to as the circulatory
terms because they are calculated from the bound and shed
vorticity, and the others are referred to as the potential terms.
The potential terms are in the nature of additional-apparent-
mass effects, and all those that involve 42 are usually treated
together with the inertia forces rather than with the aero-
dynamic forces. For compressible flow, however, the forces
are calculated in a different manner, and the division of the
forces into circulatory and potential parts then has little
meaning. Consequently, in order to facilitate the extension
of this analysis to compressible flow, this distinction will not
be made herein.
The aerodynamic forces are therefore written as

- (60)

le=2mge I:O'l(k)a—l- G /2]
(61)
ma=2nqct | Cu(Ba-+ Gl =]



166 REPORT 1345—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

80 that for incompressible flow
Gl = (142601 OO+ e
Ou(k)=—ikOG) +o
Gy =(1-+2e,i)es ) —5 i+ (g5 Fet ) 1t
(k) =—ike, O)—2 I

In order to calculate the lift at & given point of a wing of
finite span an appropriate Green’s function is required. An
approximation to this function based on a reciprocity theorem
of linearized lifting-surface theory, is given in the first part
of this report; as used for the computations of that part, this
function implies the assumptions that the spanwise distri-
bution of the lift for oscillations of the wing as a whole is
substantially invariant with frequency and that this distri-
bution’ is the same in direct as in raverse flow. Neither of
these assumptions is essential to the analysis but both, and
particularly the first, simplify it considerably. With these
assumptions, the desired lift distribution iz then given by
expressions of the form of equations (82a) and (34). -

For the present purpose, however, a set of aerodynamic
influence coefficients is required, rather than influence
functions. Such a set of coefficients, based on the same
ideas, can be obtained readily by the techniques used in
references 9 and 10. The result may be expressed as follows:

W=tz G+ TmIa{ 5 } | 6w

where the aerodynamic-influence-coefficient matrix [@] is
defined by

[QI=A—E) {1} vI+EKL7]

where, in turn, {1} is & unit column matrix, and [] is a row of
integrating coefficients suitable for integrating a continuous
function for a range of its argnment from 0 to 1. Thus,
for instance, if n equidistant points on the semispan are
considered, and » is odd, then according to Simpson’s rule

[IJ=— Pttt i By S

1 11424 41J
3333 33

Very little information is available concerning the span-
wise distributions of the pitching moment on wings of finite
span in unsteady flow. By means of the reciprocity theorems

an appropriate. Green’s function could be estimated if the
lift distribution for wings with parabolic camber were known;
however, such lift distributions do not appear to have been
calculated for wings of finite span in unsteady flow. In fact,
relatively little is known about moment distributions even
in steady flow. However, the available information in-
dicates that the local center of pressure does not appear to
be very sensitive to the lift distribution. (See rof. 9, for
instance.) It will be assumed that this is also true in un-
steady flow at a given frequency, and that, furthermore,
these centers of pressure are given by two-dimensional
theory. With this assumption the moment can be written
as

(made=Cr e { Bilel Qe + OB IeN1@1 ﬁ} } (62b)

The lift and moment distribution due to the gust can be
calculated in a similar manner. In the following analysis,
the magnitude of the gust intensity is considered to bhe
unity, and the longitudinal reference point is the intersection
of the elastic axis and the wing root, so that the instantaneous
gust intensity at any station y is

L]
—ik=tan A
w—e P (63)

With this function w,

Cr cqd(k
(13, =220 o)

64
G 0995(16) ©4)

{mzr}e=—"7—lewl{QH{w}

where ¢(k) is the Sears function, as before.
Finally, the inertia loads are

——mz-l- megca
Mp=—(r*+(e0)®) M+ Mmescz

or

{l}‘=—g<—‘fg_);k’lﬁml{a}+$

{mr}i=—A kel ()] {a) —
()

klml{z}

z0)

(65)
—Z— 3| mexc} {2}
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The loads applied to the wing can thus be written, in summary, as
2, 0®IQA+ | CEl® Q-

2\2 2\2

l _ z e
{m"} ' 20, Ci®) el [Q— | Cu ECa(R)le] [Q1+ {a}ﬂ {w} ’ (66)
k2
p

22

Uz, ccb(k)

—Slied) | Gl e Lec1l@)
i

LOADS APPLIED TO THE TAIL

The loads applied to the tail are similar in nature to those applied to the wing, but the tail experiences additional loads as
a result of the downwash produced by the lift on the wing. Again, little is known about the downwash in unsteady flow, and
even in steady flow the downwash cannot be predicted accurately because of boundary-layer effects on the fuselage and the
wing root. Consequently, even in steady-flow analyses experimental results are usually relied upon.

In the following analysis, the assumption is therefore made that experimental results are available for steady flow, in the
form of the downwash derivative 0¢/Oa. In order to determine the attenuation of this value with frequency, the results of
the analysis of reference 16 will be used. These results indicate that the time variation of the tail lift due to the downwash
caused by the wing lift which results from a unit jump in the wing angle of attack can be approximated by an immediate jump
in the tail lift of —0.16 of the steady-state value and another jump to the steady-state value after the time required to travel
the distance from the 45-percent-chord point of the wing to the quarter-chord point of the tail plus another eighth of the
chord length. Hence, for sinusoidal angle-of-attack changes the tail lift due to downwash is

(Ltc)a,l=—0La‘q‘S‘ E 0 16+1 163 (C‘m ic )] [(1"‘264'1/’6)&;-_"2«]5 —/2] (67)

where z,/ is the distance from the intersection of the elastic axis and the wing root (assumed for this purpose to be at the 45
percent point on the root chord) to the aerodynamic center of the tail. As pointed out in reference 16, this approximation is
valid only for £<0.35; however, this range is adequate for the present purpose.

Similarly, the downwash associated with the wing lift due to sinusoidal gusts gives rise to a tail lift which, within this
approximation, is

E74 1Cr
L) =—Cr g O e [—0 1641160 (F*5 >] : (68)

(The additional lag represents the time required to travel | where
the 0.6 root semichords from the 45-percent-chord point of

the root, which is the reference point for the gusts, to the OS(k)— 1423k
75-percent-chord point of the wing root, which is assumed

to be the point governing the lift at the wing root, inasmuch
a8 it is the centroid of the influence function for the chordwise

ressure distribution.) €4, 2 ¢ ¢

P The other aerodynamic forces are those due to the motions Crlle)= <1+2 ok — k)'l" 3 ke ( ) ke
of the airplane, those due to the tail deformations, and those
directly due to the gusts. On the basis of the assumptions
made in the preceding section, these forces are

cl

) ar)rierg Tt

Oy =—ik0 (& k)+1 G g

It,+

and «, and z, are the a,ngle of attack and vertical displacement
of the airplane at the wing root.
The inertia load on the tail is

OL‘, S, [C’E(k)a,+0ﬁ(k) _/2+C'7(k)Aa—|—C’a(k)_/2] (69) Li=—m(2,+Az2—z/a)

or

L, — m,qk?

C’La,ql l —u-, 5/ ; (&rt+Az—1/ey) (71)
L=—f—(§#)e (70) 2
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Here the center of gravity of the tail has been assumed to
coincide with its aerodynamic center; in order to remove this
assumption it is necessary only to add (or subtract) the
distance between the two to z,/ in equation (71).

The normal forces on the tail can then be summarized as
follows:

L=q[F\(k)z,+ Fy(k)er+ Fs(k) Aa+F (k) Az + Fs(k)w.]

where

(72)

rw=2c, 2% { aw+

3‘1 1es
2 0164116, (s ﬂ>:|}+

k

p(e\ .

F=Cy, & S,{ Bull)—(14-2ecik) 2 [—0.16-!—

o G “‘)J} mm P

F#=0, 2 8.0:0)

&&

Ca

Fik)=2C,,,

108
{¢ & lc) eué'—E

1160 #(FH c'):l ot (—‘“’c')}

CLﬂth Sy

Fyk)= [—0.16+

—2,
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and

The pitching moments corresponding to these normal
forces can be obtained in the manner employed for the wing.
However, inasmuch as the tail chord is usually small com-
pared with the fuselage length, the travel of the center of
pressure of the tail is small compared with the length x/.

- Hence, the center of pressure will be assumed to remain at the
serodynamic center of the tail, and the pitching moments
are then —z, times the corresponding forces, so that

M;=—‘th'[Fl(k)zr"l'FR(k)ar+F3(k)Aa+F4(k)Az+F5(k)wl]
(73)

WING AND TAIL DEFORMATIONS -

The wing deformations may be calculated either from
structural influence coefficients or from the bending and
torsion stiffnesses of the wing used in conjunction with
simple beam theory. The latter approach will be followed
here, based on the method of reference 12. .

The bending and torsion moments on the wing structure
may be obtained by integrating the applied loads. If numer-
ical methods are employed to perform these integrations the

results may be written as follows:
(74)
me

M, (8/2)?
Mz

cos A [LI] l sin A 5 H]
Similarly, the deformations are

cosA-Z-[l]

0]

(o1 el
Rz

)

b | L
—§tanA [T ]’_EI

@z li]m] -6

[0]
My
My

1| 27 | @

sin A
cos? A

where tbe mtegratmo' mat:mces (see ref. 12) perform the

(3 | 5] | —sin o (5) 1) |_EI+G J] ]

l
(75)
followmg operatlons - ‘ ’ ,

m{f}o f ey

iy | [ renae ay

m sy [ ey

maisye [ [ aenaya
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These integrating matrices may be based on the trapezoidal
rule, Simpson’s rule, or any other numerical method; the
intervals chosen for £ (0=£=1) need not be of constant
width unless a specific rule demands a uniform spacing.

The structural deformations of the wing may then be
written in terms of the applied loads as

2l -
a—a| @@ |laf *

where the submatrices [D], [®)], [®)], [@], [®)], and [@®)]

designate, respectively, the four quadrants and two halves
of the matrices, obtained by postmultiplying the square
matrix of equation (75) by the square and the rectangular
matrix of equation (66), respectively.

For the purpose of the present analysis, which is concerned
primarily with the wing stresses, the tail deformations are
treated by including only the vertical displacement and
angle-of-attack change of the tail as a whole due to the tail
load. These quantities may be obtained from a static test
which consists in applying a concentrated normal load at
the aerodynamic center of the tail and measuring these
deformations. They may also be obtained from a vibration
test in which the deflection curve of the rear part of the
fuselage in the lowest vertical-bending mode is measured;
in this case the desired spring constants can be deduced from
the frequency relation of a simple mass oscillator in terms
of the measured frequency and of the mass of the empennage
(including the part of the fuselage which may be considered
to move with the empennage). In the absence of such tests
these constants may be calculated in an analogous manner.

The tail deformations may then be written as

Aa= —Kng } (77)
AZ=K2Lg
so that, also,
.____Ka
Az= j7e Ac 7(78)

Inasmuch as these deformations are not independent of each
other, only one need be retained in the analysis. Therefore,
if Az is eliminated by means of equation (78), Aa can then
be obtained in a form similar to that used for the wing
deformations in equation (76):

Aa=—qu{F1 (k)z,+F2(Ic)a,+[F3(k) -

%E(k}]Aa}—quFs(k)wz (79)

EQUATIONS OF MOTION

Equations (76) and (79) are equations of motion inasmuch

as they describe balances of aerodynamic, structural, and

inertia forces. In fact, if the airplane fuselage were im-
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mobile (a,=2,=0), they would be sufficient to calculate all
unknown quantities. However, if the fuselage is free to
move, two additional equations are required to obtain the
two additional unknown quantities «, and z,. These addi-
tional equations are those expressing the dynamic equilibrium
of the forces on the fuselage, namely,

Lot+Li—m; (23— Ax &,)=0
(80)
My—2L— (r/+ (A2)*) mi,~+ Az m 2, =0

where the wing lift and pitching moment can be expressed in
terms of the lift and moment distributions I and m as

Lw=l—2—3'|.IJ: I.OJJ{ l }
myp
Mw=|_—2 (%)’ tan A [II}, 2% [IJJ{ l }
. mT

(81)

or

L.=q @) {Vz}ﬂlJ{w} o
M.~q®] {z}+ql®l{w}

where |@], |@)], [®), and |@] are the rows obtained by post-
multiplying the rows of equation (81) by the square and
rectangular matrices of equation (66). In equation (80) the
fuselage lift and moment have been neglected; they can
easily be expressed in terms of «, and 2z, and included, if
desired.

The equations for the tail deformation Ae and those for
the overall normal force and pitching moment can be com-
bined with equation (76) as follows: For the sake of definite-
ness it will be assumed that n stations on the wing are
considered, including the one at the root, so that there are
2n~1 unknown quantities, and that in the column matrices
defining applied loads, deformations, and so on, the values
at the root of the wing are written at the top:

N - S
Zroot
@ =4 oot
Aca .
(2277
( A J

The first and (n+1)th equations of the system defined by

- equation (76) express only the trivial fact that the structural

deformation at the wing root is zero. They are replaced by
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equetions (82) and (79), which are adjoined to the system, to yield the combined equation of motion

[ o

T 3
—11 i (

—101 0 o || 2
~1001

0 0 !;1_ nAaJ

1f the square maftrix on the right side of this equation is
designated by [A4], the rectangular matrix by {B], and the
quasi-unit matrix on the left side of the equation by [1], the
equation can also be written as :

[[1'1—q[A1]{ Aza}=q[31 {2}

The matrices [@] to [@] are the same as the matrices
[®] to [®] of equation (76), except that the first rows of
the latter, which are all zero, are replaced as follows:

(83b)

Fh;stt_x.ow Replacement Qusntity added to the leading element
® First half of |@®) Fi(k) +p—’"5 2
5G
® Second half of |@| Fa(k)—-AT 1

)

® Firat half of @] —z Fy( k)‘—pm,:" 2
5(3)
J AT
® Second half of 1@ —z,Fy(k) +m,[;-,’%|->(2 ¥l "
3G
®© @) . 0
® tz) 0

Also, the elements of the last rows and columns of the mat-
rices [A] and [B] are zero, except for the following:

A,.2,+1=F,(k)—IKijF4(k>

‘4n+l.z.+l=—x.[F3(k)—% ﬂc)]

A2n+l. 1= _KIFI (k)
A2~+1,x+1=—K1F2(k)

R IRRE

TS T 1
O |-

r +q (83a)

L i 3 41 Qe 0

A2l¢+l.2n+l= _Kl [Fs(k) _%F‘(k):l

Bl, n+l=F5(k)
Bn+l. u+1=—‘$th(k)
Bz.+1.-+1=—K1Fs(k)

SBOLUTION OF THE EQUATIONS OF MOTION

For the purpose of calculating the desired transfer func-
tions, equation (83b) may be solved directly for a given
value of g as a set of linear algebraic equations with coeffi-
cients given by the matrix [1’]—g[4] and with “knowns’’

given by the column matrix ¢[B] {::; }(where [4], [53], and
¢
{:; } are functions of Ic). The result is & column matrix of
t

the unknown amplitudes of the motions of the airplane. If
this column is calculated for several values of k in the range
of interest, these amplitudes, considered as functions of £,
are transfer functions from the gust to the motions.

This column matrix can be substituted into equation (66)

! }substituted into equa-
Mmr

tion (74), to yield a column matrix of bending and twisting
moments which again, considered as a function of k&, repre-
sents transfer functions from the gust to these moments.
A set of transfer functions for the vertical shear could bo
calculated similarly from the relation

v=smio]{,. }

The stress at any point of the structure can be assumed
to be given by a linear superposition of the bending moment,
twisting moment, and vertical shear at the given station, if
elementary beam theory is used. If elementary beam theory
cannot be used because of the interaction of bending and
torsion stresses or because of shear lag, the stress at a given
point can be expressed as a linear superposition of moments
and shears at other stations as well as the given station. In
either case, the transfer function for the given stress is then

and theresulting column matrix
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produced by the same linear superposition of the transfer
functions for the corresponding moments and shears.

It may be noted that, at zero frequency, solution of equa-
tion (83b) yields the static aeroelastic deformations and thus
permits the calculation of the changes in the lift distribution
and the shift of the aerodynamic center that result from
static aeroelastic action. Also, inasmuch as this equation
completely describes the dynamic behavior of the airplane,
the speeds at which aeroelastic instability phenomena occur
can be calculated from it, although such calculations are
beyond the scope ot this report. Suffice it to point out that
for such a calculation the degrees of freedom of the body
must be eliminated first, as a result of the way in which
the problem has been set up. This elimination can be
effected readily by considering the first and (n-}1)th rows
of [A], but ‘Vitrh Au, Al_ 41y Au+l.l: and Aﬂ.‘.l'g.l.l I‘eplaced by
0., Tf these rows are premultiplied by

i, 4]

An+11 -An+l.u+l

and used as the first and (n-+1)th rows of a matrix which
is otherwise 9 unit matrix, and if this resulting matrix is

referred to ae [1’’], then equation (83b) can be written for
this homogenenus case as

z
(1] [17]—ql4] [1"]]{ o }= {0}
A

The produects {1’] [1’/] and [4] [1”/] will now have two null
rows and columns each, which correspond to 2z, and o, If
these rows and columns are deleted and 2z, and «, are deleted

z 2y’
n @ }, yielding a column @ }, the remaining mat-
Acx Aa

rices are nonsingular, so that they can be inverted and the
preceding equation can be written as

z 4
[[E]—Q[D(k)]]{ @ }={0} (84)
Ac

where [E] is the identity maftrix, and

we@i=[rro1] 4]

The horizontal braces designate the fact that the null rows
and columns have been deleted.

Equation (84) is in the canonical form for the calculation
of eigenvalues. If % is set equal to zero and the eigenvalues
of [D(0)] are calculated by iteration, expansion of the de-
terminant, or any other suitable method, the lowest real
and positive one represents the value of the dynamic pres-
sure at divergence. For swept wings the value lowest in
absolute magnitude is usually negative and is therefore of
no practical significance, although it is often used as an
index of the aeroelastic behavior of the airplane.

This calculation can be repeated for various positive values

’

of k, the first few eigenvalues being obtained for each. The
results, which will generally be complex, can be plotted
against k. When any of the eigenvalues becomes purely
real, it represents a dynamic pressure at flutter, and the
corresponding value of % represents the reduced frequency
at flutter. (This statement is true only if the structural
damping is zero; such damping effects can easily be included,
but the details of the process are beyond the scope of this
report.)

DYNAMICS OF THE LARGE FLEXIBLE AIRPLANE

For the large flexible airplane the fundamental proposition
of power spectral analysis, that the output power spectrum
of a system is the product of the absolute square of the
transfer function and the input power spectrum, is no longer
valid if the input is considered to be the gust intensity at a
point. Nor can the output power spectrum be expressed

“directly in terms of an effective input spectrum, as in the

case of the rigid airplane, where this simplification resulted
from the assumption that the indicial-response function was
expressible as the product of a function of time alone and a
function of distance along the span alone.

In the first section of this part of the report the statistical
problems involved in an analysis of the response of a large
flexible airplane are considered. The nature of the general-
ized transfer functions required for this purpose is described,
sad the means whereby they are combined with the input
spectrum are indicated.

The second section is concerned with an extensmn of the
method outlined in the preceding part to the case of the large
airplane. Although fundamentally the dynamic aspects
of the problem are unchanged, and although the longitudinal
and lateral degrees of freedom can still be separated, a direct
application of the approaches outlined in the preceding parts
of the report to the large airplane requires consideration of
the entire wing, rather than only one half of the wing.
Little additional computing time is then required to treat
the lateral and longitudinal degrees of freedom simul-
taneously, and the necessity of combining the results of two
separate analyses is obviated. However, attention can
still be confined to one half of the wing by using the technique
outlined in the discussion following equation (55) and in the
section headed “‘Combination of the Results Obtained From
Analyses of the Longitudinal and Lateral Degrees of Free-
dom.” Basically this technique consists in splitting the
influence functions of concern into symmetric and anti-
symmetric parts and using one part for an analysis involving
the longitudinal degrees, and the other in an analysis in-
volving the lateral degrees. If this approach is adopted,
separate analysis of longitudinal and lateral degrees of
freedom is still preferable.

EXTENSION OF THE STATISTICAL APPROACH

The power spectrum and, hence, the mean-square values
of the responses such as the stress at a given point on the
wing of a large flexible airplane due to flight through turbu-
lent air can be calculated in several ways. Perhaps the most
direct of these consists in using the basic approach outlined
in the first part of this paper and starting with an expression
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for the instantaneous value of the stress in terms of a suitable
indicial-response influence function, namely,

@ (bR
=" [ repevt-npain 6

The function A7(t, %) is, as before, an indicial-response
influence function or Green’s function for the partial differen-
tial equation. It relates the stress as s function of space
and time coordinates to the applied loads, which are also
functions of space and time coordinates. The essential

it is

difference between the problem considered in this section
and those treated in the first two parts of the report is that
this function can no longer be expressed as a product of a
function of £ alone and y alone. In some cases—in a modal
approach, for instance—it may be expressible as a sum of
several such functions, and then the approach used previously
for the bending moment of a large rigid airplane free to move
vertically may be adopted, as has been done in reference 13.
However, in this section the case is considered in which
even this simplification cannot be made.

The correlation function for ¢ can be calculated directly from equation (85), and for the case of axisymmetric turbulence

® @ bf2 2
wo= [ 77 7 bt gdheten u e NORF ot F G dundys dis (80)

Hence, the power spectrum of ¢ can be obtained by calculating the Fourier transform of this function and is

&/2 b2
¢o(w)= Lﬂ LﬂH:'@,yoH:(w,yz)aw(w, lys—yal) dys dyge (87)

where $.(w,7) is the two-dimensional spectrum considered previously, H,(w,y) is the Fourier transform of k;({,) with respect
to time, and the asterisk designates a complex conjugate, as before. Thus, the function H}(w,y) is a transfer function from
sinusoidal vertical gusts (of width dy) impinging on the wing at & given station ¥ on the wing to the stress 7, or a, Green’s func-
tion for the ordinary differential equation (with the quantity  as a parameter) that relates the stress amplitude as a function
of the space coordinate y to the amplitude of the applied sinusoidal gusts.

The term H? (w,31) Hz(w,ys) in equation (87) is complex; however, the imaginary part can be ignored because it contributes
nothing to the integral as a result of the fact that &,, depends only on |y;—1|.

In a manner analogous to the one employed in the first part of this report, the double integral in equation (87) can be

evaluated by introducing the function ﬁ‘:(w,n) which takes the place of the function I'() used previously and is defined by an
autoconvolution of H(w,n):

~ b2
Beo, =2 R{BX (o) Heloy+n)y
where R{ } designates the real part. Hence,
b A~ ok
o) = [ B, el dn (39)

Another approach consists in using the double Fourier transform ®,,(\) of the axisymmetric input correlation defined in
the first part of this report. In terms of this function the correlation function ¥,(+) can be written as

@ @ b/2 b/ ® ©
¥e(7) =%f - f - f - bl2f —wzf wd - RS @1yDhs (La,ys) UG+ Hae-mlg,, (VA AE) dMdNsdydydt dis
"B (VNETR) ANy

=% f—mm f_u; eMUr

where the function

ﬁ'«"()\n)\a)

© b/R
ﬁ':()\n)\z)=f f h3(t ) e iU dy dt
—od —W2
represents the Fourier transform (with respect to y) of the function HY (w,y), that is,

B = [ e MoEOT ) dy (89)
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@ © @ 2
%(‘0)=£f_ f_ f_ ePUrg—tor ‘Pw(\‘)\lz‘i')\z’)d)\xd)\s dr

~ (o (VB) ) «

'With the approach outlined in the next section, the function HY(w,y) can be calculated either directly or indirectly, by
first calculating the transfer function from the gust to the lift distribution and then the transfer function from the lift distri-
bution to the stress. For the indirect method,

Hence,

él:(kh.}‘i)

/

b2
Hiog)= | Bion)H@Gn0)n

where the function HY(w) @(3,y) is the influence function for the locel lift or the Green’s function for the aerodynamic
problem involving sinusoidal gusts considered in the first part of this report; the symbols 7 and y in @(»,y) are inter-
changed, however, so that the function now defines the confribution of a gust at station y to the lift at station 1.
The transfer function Hi(w,n) relates the (sinusoidal) stress at the given point to a unit concentrated (sinusoidal) normal
force acting at station 7.

With this indirect method, the power spectrum for the stress at a given point can be calculated by starting with the
power spectrum for the lift distribution calculated in the first part of the report. For this approach ¢(f) may be
writton as

N
o= [ ptle—tdydn

so0 that
-} -] b2 7,4
%(T):f_ 'f_ rf_mf_mhé(tl,yl.)hé(tz,yi)%(T‘l'tl—tml/l;’.llz)dyld?lzdtldta
and ,
o
o= [ Ho ) Bl estonnd s (1)
where )

¥ (r,yl,ya) El(t;yl)l (T"|'t,'y2)

The Fourier transform of this correlation function is, then,
o1y, = H () [*pw, @) i (92)

(See the section headed “Generalized Aerodynamic Influence Functions in Unsteady Flow.”) Hence,
. b/ b/3
W@ =B [ 7 H oy Blom)en ydus (98)
If vuw () i8 given by equation (35), the double integral can be expressed in terms of single integrals as follows:

o) =|HE @)1 [(1—K>f|G<w>|=¢w.(w)+zK(1—K>R{ @) G"* () }+Kﬁf @ (,m)ules;n) dn:l (04)

where
b/2
6w=|" Hionyr)dy
b/2
GO=]" e ey

@ =2 [ R IR{E oy+n) T Heon) ) H{ B+ Hr@vly-+n)dy

-8
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as before, R{ } designates the real part, and I{ } designates the
imaginary part.

Equations (88), (90), and (93) thus represent three
methods of obtaining the power spectrum of the given stress.
One requires a transfer function from the local gust intensities
directly to the stress, an autoconvolution 'of this transfer
function, and the spectrum of turbulence defined by equation
(18); the second requires a two-dimensional spectrum of the
turbulence defined by equations (17a) and (17b) and a
Fourier transform of the aforementioned transfer function
with respect to y; the third utilizes an autoconvolution of
the transfer functions from local concentrated loads to the
stress and the spectrum for local lifts due to vertical gusts
calculated in the first part of the report. The choice of
approach depends to some extent on the information avail-
able, but is largely a matter of individual preference.

The analysis in this section has been based on the premise
that both halves of the wing would be treated simultaneously.
Attention can be confined to one wing by using only the
symmetric parts of the influence functions in an analysis
involving the longitudinal degrees of freedom, and only the
antisymmetric parts in an analysis involving the lateral
degrees of freedom. The symmetric part of an influence
function for a unit concentrated load or gust acting at sta-
tion y is the response function for two loads or gusts of % unit
intensity acting at stations y and —y, respectively. Simi-
larly, the antisymmetric part is the response for a load or
gust of ¥ unit intensity acting at station ¥ and an equal and
opposite load or gust acting at station —y. If this approach
is chosen, some of the integral expressions given in this
section assume slightly simpler forms. For instance, equa-
tion (89) can then be written for the symmetric part as

A . i/2
Hzua)=2 f cos MyHEONU )dy

and for the antisymmetric part as
b
0

A /2
A2\ =—2i J sin My =\ ) dy

CALCULATION OF THE REQUIRED TRANSFER FUNCTIONS

Depending on which of the methods outlined in the pre-
ceding section is used, one of two types of transfer functions
is required—either the one from local gusts to the stress of
interest, or the one from the local lift to that stress. Both
of these functions differ in several respects from those con-
sidered in the preceding part of this report.

For either type of transfer function the structural de-
formations of the wing under concentrated loads as well as
under distributed loads will be required, so that the numeri-
cal-integration schemes used in the preceding part have to be
modified to some extent. Also, it may now be preferable to
consider the entire wing (rather than the one semispan con-
sidered in the case of the small flexible airplane), so that the
various transfer functions are asymmetric. With the degrees
of freedom considered in the analysis thus doubled, it becomes

preferable to include one additional degree of freedom, roll,
rather than to perform two separate analyses for symmetric
and antisymmetric motions with, respectively, one and two
less degrees of freedom, and then to combine the results.
However, if the alternative approach of splitting up the
influence functions into symmetric and antisymmetric parts
for use in two separate analyses is adopted, only one semispan
need be considered, and the results presented in this section
can then be simplified to a large extent.

Before discussing the modifications required to extend the
dynamic analysis outlined in the preceding part of the report.
to the large airplane, it might be pointed out that chordwise
deformations (deformations parallel to the chord) will again
be ignored. Again, they can readily be included by a
straightforward extension of the approach used here if it is
felt that they may be significant in any given case. If they
are included, however, yawing and possibly also sideslipping
motions can probably no longer be ignored, because they
may give rise to large forces in the chordwise direction. If
the entire wing is treated, these two additional degrees of
freedom can readily be included, and all longitudinal and
lateral degrees of freedom are then treated simultaneously;
if two separate analyses are performed for the longitudinal
and lateral degrees of freedom, the symmetric and anti-
symmetric parts of the influence functions being used and
only one semispan being treated, these additional degrees of
freedom enter only into the lateral analysis.

The structural deformation due to local (concentrated)
loads can be obtained in several ways. If measured influence
coefficients are used, they pertain precisely to such loads and,
in fact, must be modified before they can be used for dis-
tributed loads (see ref. 12) so that it is necessary only to use

" the unmodified coefficients.

If the deformations are to be calculated in a manner
similar to that employed in the preceding part, the inte-
grating matrices must be replaced as follows:

S my s

where
I,/=1 (¢>p
Li=; (g=2)
- I,/ =0 (e<p)
and
(5)mm by £ w7
where
I =ye—y» (¢z D)
Ly = e<p
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The factor of ¥ for I,,,/ constitutes an approximation which
implies fairing through a discontinuity. If this approxi-
mation is to be avoided, the deflections due to unit concen-
trated loads (the structural influence coefficients) can be
caleculated directly from simple beam theory, in -which
case the limits of integration take care of the discontinu-
ities. 'Thus, for instance, for an unswept wing, the normal
deflection and twist at y, due to a unit concentrated load
and torque, respectively, at y, are

vp (¥
Cpg=
0o Jo

zm—fy“ E—I-@-dydy’-k(yp yq)f

YU dy dyl

Elw) Wy = Yo

T Yo
EI@) dy W» >y

am=_£ypa71@dy @s =< 7o)
n_ 1
= | “grm ¥ We <)

The concentrated loads under consideration arise as
follows: For the transfer functions relating local lifts to
the desired stress, the local lifts may be considered to be
concenfrated loads of unit magnitude, associated with
concentrated torques of magnitude ee. Equation (83b)
can then be written as (see also eq. (76))

N z —[R’ ___l._'z_Q]___
=gt | 2 [ bk |

where |w)] is a diagonal matrix of the values of w defined by
equation (63), and where the matrix [R’] represents either
the four influence-coefficient matrices for z and « due to
concentrated loads and torques, or the square matrix of
equation (75) with modified integrating matrices, as dis-
cussed in the preceding paragraphs.

It may be noted that equation (95) now represents not
one set of simultaneous equations but several, all having
the same coefficients but different sets of knowns (as defined
by the columns of the matrix on the right side) and,

hence, different sets of unknowns | the columns of the

2
matrix [a])- This situation is due to the fact that the
Ax

functions under consideration are, in effect, the responses of
the airplane as a whole to sinusoidally varying concentrated
loads and are different for each location of the applied load.

Once this equation has been modified to take into account
the overall body motions and tail deflections (as explained
in the preceding part) as well as the rolling motions (as

explained in the following paragraphs), it can be solved to
z

yield the unknown values of From these velues the

Ac

bending and twisting moments, as well as the vertical shears,

can be calculated and added to those due to the concentrated

(95) .

|
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loads. When combined linearly as required for the desired
stress, these moments and shears yield the desired transfer
functions Hl(v,y).

Ii the transfer function directly from the local gusts to
the desired stress is to be determined, the response of the
airplane to the lift distribution induced by a sinusoidal gust
of width dy acting at station ¥ must be calculated. This
lift distribution is the Green’s function considered previously.
If it is represented by the relation HY(0) G(y,7), with G(y,n)
defined by the approximation given in equation (34), the
concentrated loads arise from the delta function in thai. ex-
pression. Theright side of equation (95) becomes, in that case,

) [y @) v (1))
0 (10 @) (71 [ 2 OO T+

v ’ l'Y )] lw]
K B @) 1| Y @il

where [E] represents the square matrix of equation (75),
and [R’] the one discussed in connection with equation (95).
Again, several sets of simultaneous equations are implied.
Their solution (after modification for overall motions and
tail deflections) yields values of z and « from which the
transfer functions Hs(w,y) can be calculated.

The extension of the method of the preceding part to the
calculation of the deformations on both wings is straight-
forward. Iissentially, distributed lifts and torques now have
to be calculated for both wings and integrated with matrices
which can be assembled from those used for one wing alone.
No new problems arise in this process, so that it need not
be discussed further.

The inclusion of rolling motion, however, is not so straight-
forward. One method consists in replacing all values of z
in equation (83a) or its equivalent by 246y and then
reducing the columns involving this quantity by the following
relation (which assumes that the new unknown quantity,
the roll angle O, is listed at the end of the column):

1 1
1
1
246y 1 0 0ty z
_______ - : —_
- 1
1
- 0 0 R
)
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An additional equation must then be joined to the set,
namely, the equation of equilibrium in roll

b2 . . \
f-blz I(y) ydy—I1.6—Mp,6=0 (96)

where I, is the inertia in roll of the fuselage and empennage
alone inasmuch as the inertia effects of the wing are included
in I(y), and Mp, is the coeficient of damping in roll for the
empennage. For most cases both of these contributions are
negligible If they are ignored, equation (96) can be written
in matrix notation as v

[z}=o0

where |II] is now a matrix which serves to perform the inte-
gration required in equation (96). This condition can then
be adjoined to the other equations of the set in the same
manner as equations (82) were adjoined to the set in the
preceding part.

The result, again, is a set of simultaneous equations for z,
@, A, and © from the solution of which the desired transfer
functions can be obtained as outlined in the preceding para-
graphs. Also, as before, once the unknowns z,, «,, and © are
eliminated from the set, the divergence and flutter speeds
can be calculated by conventional matrix operations; these
speeds will then pertain to an airplane free to move verti-
cally as well as in pitch and roll and, hence, will include
divergence and flutter speeds in antisymmetric as well as
symmetric modes.

DISCUSSION

SOME IMPLICATIONS OF THE ASSUMPTIONS CONCERNING THE NATURE
OF ATMOSPHERIC TURBULENCE

The turbulence was assumed to be homogeneous in order
to make the problem stationary in the statistical sense and
thus permit the use of the mathematical techniques developed
for such problems. In a practical sense, turbulence can be
homogeneous only in a limited body of air. The assump-
tion thus implies that the dimension of this body of air
along the flight path is large compared with the distance
traversed in the reaction time of the airplane, which in the
case of load studies is of the order of the time to damp to
one-half amplitude, but in the case of motion studies may
be much larger. Obviously, the greater the body of air,
the greater the reliability with which the loads and motions
can be predicted (in a statistical sense) for one run through it.
In general, turbulence at very low altitudes, which may be
influenced significantly by the configuration of the ground,
and turbulence in thunderstorms may not be sufficiently
homogeneous for the purpose of this type of analysis, but
other types of turbulence are likely to be substantially
homogeneous over sufficiently large distances.

Isotropy was assumed in order to permit the required two-
dimensional correlation functions to be expressed simply in
terms of the one-dimensional correlation functions. For
sufficiently short wave lengths all turbulence is isotropic, but
for long wave lengths it can be isotropic only if it is homo-
geneous (both in the plane of the flight path and perpendicu-
lar to it). The condition of axisymmetry, which is sufficient
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for most of the results presented herein, is less restrictive than

. isotropy inasmuch as it does not specify the variation of the

characteristics of the turbulence in the vertical direction.
In practical problems, if the turbulence may be assumed to
be homogeneous, the conditions of axisymmetry and iso-
tropy are likely to be satisfied to a sufficient extent to permit
the use of the approach presented herein for all but very
long wave lengths. The wave length at which it ceases to
be valid depends on the size of the body of air under con-
sideration, being larger for a large body.

Taylor’s hypothesis (to the effect that a space displace-
ment Az along the flight path may be idéntified with a time
displacement r=Az/U in the gust correlation functions) im-
plies that the variation in gust intensity that prevails along
the flight path at any instant will remain substantially the
same until the airplane has traversed the given body of air.
The required correlation functions for atmospheric turbulence
are thus in the nature of space correlation functions (rather
than time correlation functions) and have been considered
as such. The statistical characteristics of the turbulence
are then independent of the speed at which it is traversed.
Clearly, whether or not this hypothesis is valid depends on
the flying speed of the airplane. On the basis of present
knowledge no definite lower limiting speed can be quoted.
However, indications are that the hypothesis is valid for
flying speeds greater than about 100 or 200 feet per second.
The effect of finite flying speed on the gust correlation func-
tion can be expected to be most pronounced for large dis-
tances, where the correlation is weak, so that the effect on
the various spectra is likely to be small and to occur at the
longest wave lengths, where, as previously mentioned, the
spectrum is somewhat uncertain for other reasons as well;
this effect is thus more likely to be significant for large than
for small airplanes.

The particular correlation function used herein for the cal-
culations of the “averaged” correlation functions and spectra
has certain theoretical shortcomings—primarily that the
associated spectrum does not decrease rapidly enough for
very short wave lengths. However, it does appear to be
adequate to represent the available information concernmg
the spectra of atmospheric turbulence (see ref. 17, for in-
stance) because the behavior at very short wave lengl:hs is
relatively unimportant, inasmuch as airplanes cannot re-
spond to them, and the behavior at very long wave lengths
is usually in doubt by reason of the nonhomogeneity of actual
turbulence. In the intermediate range of wave lengths, this
correlation function appears to be quite satisfactory.

The parameter L* (the integral scale of turbulence) used
herein is, for practical purposes, a largely fictitious quantity,
inasmuch as it is proportional to the values of the gust
spectrum for infinite wave lengths, which, in view of the
uncertainties in the values of the spectra at large wave
lengths, have little physical significance. Therefore, at
present, insufficient information is available to give a value
for L* to be used in connection with the numerical results
calculated herein, although a wvalue of 1,000 to 2,000 feet
appears to be appropriate. As more information concern-
ing the spectrum of atmospheric turbulence becomes avail-
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able, more definite values can be deduced by fitting an
analytical expression of the type used here to measured
results in the range of frequencies of primary interest, and
then using this expression as a means of obtaining a value
of L* by extrapolation of the measured results to infinite
wave lengths (zero frequency).

CONSIDERATIONS PERTINENT TO THE APPLICATION OF STATIONARY-

RANDOM-PROCESS TECHNIQUES TO GUST-LOAD PROBLEMS

The purpose’of this section is to point out how, in principle,
the results of analyses of the type outlined herein may be
used in overall load analysis and, hence, in the design of an
airplane,

Consideration is confined in this paper primarily to the
power spectra of the motions and stresses of interest.: As
pointed out in references 1, 2, 3, and 11, for instance, a great
deal of statistical information of direct interest can be
obtained from the power spectrum. For instance, if the
random process of concern (say, the given stress as a func-
tion of time) has a Gaussian probability distribution, the
expected number of peaks at or beyond a given level in a
given period of time can be celculated very simply from the
integral of the spectrum and its second and fourth moments.

The results obtained in this manner pertain to continued
flight in a given body of turbulent air. They have to be
generalized by determining the likelihood of flying through
turbulence of the given characteristics. (See ref. 18.) The
probability of exceeding a given stress level during the ex-
pected life of the airplane while flying through atmospheric
turbulence can thus be calculated in straightforward fashion.
To this probability must then be added the probability of
excceding this level in maneuvers, landings, and, possibly,
also in turbulence due to thunderstorms, because in view of
the possibly nonhomogeneous character of turbulence in
thunderstorms and the possibly nonlinear nature of the
aerodynamic forces incurred while flying through them, the
techniques used herein may not be applicable to flight
through thunderstorms, and a separate analysis may have
to be performed.

Although the available information concerning atmos-
pheric turbulence is inadequate to permit of any definite
conclusion, the results obtainable with the approach outlined
herein may turn out to be most significant for the prediction
of the low- and medium-amplitude stress cycles which are
important to fatigue studies; their validity for or contribu-
tion to the prediction of very severe loads remains to be seen.

CONCLUDING REMARKS

The statistical approach to the problem of calculating the
dynamic responses and the stresses of an airplane subjected
to continuous random atmospheric turbulence has been
extended in several respects; basically, only the assumptions
of linearity, that is, of small motions and deformations, as
well as homogeneity and axisymmetry of the turbulence are
retained.

The first problem considered was the effect of spanwise
variations of the instantaneous turbulent velocities on the
lift and moments due to turbulence. The mean-square lift
has been shown to be reduced considerably if the span of the
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airplane is relatively large compared with the integral scale
of turbulence. The shape of the spectrum of this lift is
affected relatively little by spanwise variations of gust
intensity, except at very high frequencies, if the decrease in
the effective mean-square intensity is taken into account.
The effect of sweep on the mean-square lift and its spectrum
has been shown to be small for wings with a given distance
from root 1o tip.

If the variation of the instantaneous velocities is taken
into account, the rolling moment to which the airplane is
subjected can be calculated. The mean-square rolling
moment has been shown to be proportional to the ratio of
the wing span to the integral scale of turbulence for small
values of that ratio. Similarly, expressions for the mean-
square values and the power spectra of the local lift, the
bending moments, and the pitching moment have been given.
For some of these forces the required aerodynamic informa-
tion cannot be calculated by existing methods. Therefore,
certain approximations, based on experience with steady

" aerodynamic forces and available knowledge concerning

unsteady forces, had to be made for the aerodynamic influ-
ence functions in unsteady flow.

The next problem considered was the dynamic response of
8 rigid airplané to random turbulence. This problem had
previously been treated for the case of an airplane free to
move only in the vertical direction and small enough so that
variation of the turbulent velocities along the span could be
neglected. In the present report the response of an airplane
in three longitudinal degrees of freedom was considered;
calculations were made which suggest that the inclusion of
deviations from the mean horizontal motion is superfluous
in gust-load calculations. For the remaining two longi-
tudinal degrees of freedom, the mean-square normal and
angular acceleration -have been shown to be functions of
only two parameters other than the mass ratio and scale
parameter of the single-degree-of-freedom case, namely,
dimensionless forms of the short-period frequency and of
the time to damp to one-half amplitude. An indication is
given of the manner in which the results obtained in connec-
tion with the first problem can be used to extend this dy-
namic analysis to the case in which variations of the turbulent
velocity along the span have to be taken into account.

The last problem treated was the dynamic response of a
flexible airplane, including vertical motion, pitch, and, when
necessary (as when spanwise variations in gust intensity are
taken into account), roll. Morizontal and lateral (yawing
and sideslipping) motions were disregarded because they do
not generally affect the wing stresses due to vertical gusts.
A method whichrepresents an extension to the dynamic case
of a numerical-integration approach to the static aeroelastic
problem has been outlined for the analysis of the problem at
hand. The modifications required in the basic statistical
approach and in this method of dynamic analysis in order
to treat the case in which spanwise variations of the gust
intensity are important have been discussed.

Although most of this analysis has been confined to the
vertical component of turbulence, it has been shown that the
simultaneous action of longitudinal, vertical, and lateral
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gusts on the wing stresses (with due allowance for the fact
that vertical gusts affect both the longitudinal and the lateral
motions of the airplane) can be taken into account by simply
adding the power spectra of the various contributions, pro-
vided the turbulence is isotropic; the cross correlations or
spectra have been shown to vanish either by the symmetry
or antisymmetry of the influence functions involved or as a
result of the statistical independence of mutually perpendicu-
lar velocity components.
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The approach presented herein thus furnishes a founda-
tion for the prediction of the statistical properties of the
stress experience of a given airplane once the appropriate
statistical characteristics of the atmosphere have been de-
termined. .

LANGLEY AERONAUTICAL LLABORATORY,
NATIONAL Apvisory COAMMITTEE FOR AERONAUTICS,
Lanerey Fierp, Va., November 5, 1956.
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